1
2
3

1
2
3

1
2
3
4

1 Algorithm Cost
insert Ord a => a -> [a]
insert x [] = [x]

-> [a]

insert x (y:ys) -- Assume ys is sorted.
| x <=y = x y : ys
| otherwise =y insert x ys

Cost Tinsert(0) =
sion, this is O(n).

isort Ord a => [a] -> [a] -- 0(n~2)
isort [] = []
isort (x:xs) = insert x (isort xs)

Tisort(n) = 1 + Tinsert(n— 1) + Tisort (1 — 1). In general:

T(k)=T(x)=0 -- Constants, variables

T(f et en) = T(f) el en + T(el) +

T(p ? el e2) = T(p) + p ? T(el) T(e2)
T(f(g(x) = T(f)(gx)+T(g)x

1.1 Normal Form

+ T(en)

Lazy things are in weak headed NF and strict things are in

NF. e is in NF if:
. \x -> e’ and e’ isin NE

x and x is a normal variable.

f x where f and x are normal.

@ DD
mwian

WHNF doesn’t need normal lambda bodies.
1.2 Complexity Classes

JiDN
feogm) | f<g | limyo D8 =
feOEm) | f<g | limpo Lo <o
fmeoEm) | f=g | 0<limm 2
fem) | frg | limiw Lo >
fewgm) | frg | limue K = oo
We can also define the sets as:

f(n)eo(g(n) & V¥o>03m>0.Yn>m.f(n)<og(n)
f(n)eO(g(n)) ©36>03Im>0.Yn>m.f (n) < 5g(n)
f(n) €O(g(n)) & f(n) e Og(n) A f(n) € Qg(n)
f(n)eQ(g(n) ©36>0.3m>0.Vn>m.f(n) > og(n)
f(n) e w(g(n) ©V¥6>03Im>0.Yn>m.f(n)>og(n)
2 Lists
data [a] where
[1 :: [a] -- 0(1)
() a -> [a] -> [a] -- O(1)
(++) [a] -> [a] -> [a] -- O(n), n = length xs
[1 ++ ys = ys
(x:xs) ++ ys = x (xs ++ ys)

We can define folds on lists as:

concat [[al]l -> [a] -- O(mn)

concat [] = []

concat (xs:xss) = xs ++ concat xss

-- foldr f k [a,b,c] = f a (f b (f ¢ k))
foldr (a -=>b ->b) ->b -> [a] -> b
foldr f k [] = k

foldr f k (x:xs) = £ x (foldr f k xs)

-- foldl f k [a,b,c] = f (f (f k a) b) ¢
foldl (b ->a ->b) ->b -> [a] -> b
foldl f acc [] = acc

foldl f acc (x:xs) = foldl f (f acc x) xs
xs ++ ys = foldr (:) ys xs

concat xss = foldr (++) [] xss -- O(mn)
concat yys = folfl (++) [] yss -- 0(n~2m)

If f is assoc and k is a zero under f, then its a monoid:

-- e.g. Int: <0, +>, <1, =*>
-- e.g. [a]: <[], ++>
class Monoid m where
mempty :: m
(<>) m->m ->m
mempty <> x = x
X <> mempty = x
(x <> y) <>z =x <> (y <> 7)

L; Tinsert(n) = 1+ Tinsert(n —1). By expan-

1
2
3

1"
12
13

3 Abstract Datatypes

data Tree a = Leaf a | Node (Tree a) (Tree a)
values (Leaf x) = [x]
values (Node 1 r) = values 1 ++ values r -- 0(n~2)

To do better than O(n?2), define a sequence:

class Seq seq where
-- nil, cons, append, len, tolist,
instance Seq [] where --Can we do better than
-- nil, cons, toList, fromList are 0(1)
-- snoc, append, len are 0(n)

fromList
this?

snoc,

Since xs ++ (ys ++ zs) = (xs ++) (ys ++)

we can write:

-- Good for construction, bad for processing.
data DList a = DList ([a] -> [a])
instance Seq DList where
-- nil, cons, snoc, append, fromList are 0(1)
-- len, head, tail, init, last, !!, tolList are O(n)
-- Great for optimising:
values' Tree a -> [a] -- 0(n)
values' = tolist . go
where go Tree a -> DList a -- 0(n)
go (Leaf x) = cons x nil
go (Fork 1 r) = go 1 ‘append’ go r

4 Divide and Conquer

A DAC algorithm splits problems into smaller subproblems,
solves those into subsolutions, and recombines them. For ex-

ample, merge sort:

splitAt xs n = (take n xs, drop n xs) -- 0(n)
splitHalf xs = splitAt xs (length xs “div’ 2) -- 0(n)
merge Ord a => [a] -> [a] -> [a] -- O(m + n)
merge [] ys = ys
merge xs [] = xs
merge xxs@(x:xs) yys@(y:ys)

| x <=y = x merge Xxs yys

| otherwise =y merge XxXxs ys
msort Ord a => [a] -> [a]
msort [] = []
msort [x] = [x]
msort xs = let (us, vs) = splitHalf xs

in merge (msort us, msort vs)

Tmsort(n) = Tien(n) + TsplitAt(%) + Tmerge(%) + ZTmsort(%) €

O(nlogn). (Best and worst!) Quicksort:

partition (a -> Bool) -> [a] -> ([a], [a])--0(n)
partition p xs = (filter p xs, filter (not . p) xs)
allless Ord a => a -> [a] -> ([a], [a]) -- O(n)
alllLess x xs = partition (< x) xs

gqsort Ord a => [a] -> [a]

gsort [] = []

gsort (x:xs) = let (us, vs) = allless x xs

in (gsort us) ++ [x] ++ (gsort vs)

Best case Tgsort(n) = TallLess(n — 1) + Zquort(%) + T (1) +
TH(%) =Q(nlogn). Worst case Tgsort(n) = TallLess(n — 1) +
Tgsort(0) + Tgsort(= 1) + Ty (0) + T (1) =O(n?). It may be .,

better to take a random elem.

-- These two methods are O(N), making log N tree
foldArray £ xs = go 0 (n-1)
where (arr, n) = (toArray xs, length xs)
go i j
| i ==j = arr ! i
| otherwise = f (go i mid) (go (mid + 1) j)
where mid = (i + j) “div® 2
foldMerge _ [x] = x
foldMerge f xs = foldMerge f (mergePairs xs)
where
mergePairs (x:y:rest) = x y : mergePairs rest
mergePairs [x] = [x]
mergePairs [] =[]

(zs
++) [], we see bracketing has no effect on the result. Hence,

5 Dynamic Programming

Write a bad solution recursively, catch sub-solutions.

-- Example: fibonacci
fib' Int -> Integer
fib' n = table ! n
where table Array Int Integer
table = tabulate (0, n) memo
memo Int -> Integer
memo 0 = 0
memo 1 = 1
memo table !

(bad spatial
-- 0(n)

s
|

(i -
edit distance
Array Int Char
String -> Text
listArray (0,

-- Example:
type Text =
fromString

fromString cs =

—- 0(n)
length cs - 1)

dist "' String
dist'' cs1 cs2 =
where table

-> String -> Int
table ! (m, n)
Array (Int, Int) Int
table = tabulate ((0,0),(m,n))
memo Int -> Int -> Int
memo 0 j = j
memo i 0 = i
memo i j = minimum
[table ! (i - 1, j) + 1
, table ! (i, j - 1) + 1
, table ! (i-1, j-1) + c1 ==
where ¢1 = ¢s1 ! (m - i)
c2 =cs2 ! (n - j)
length cs1, length cs2
str2 = fromString csi,

m, n =
stril,
5.1 Evidence of Work
cs = [1, 2, 3, 5, 10, 20,
change Pence -> [Pence]
change g = table ! g
where table Array Pence [Pence]
table = tabulate (0, g) memo
memo Pence -> [Pence]
memo 0 = []
memo g = minimumBy (compare ‘on’
[¢ (table ! (g - ¢)) | ¢ <-
-- To keep track of work done:
change ' Pence -> [Pence] -- 0(n)
change ' Seq.tolList (table ! g)
where t Array Pence (LenList Pence)
t = tabulate (0, g) memo
memo Pence -> LenList Pence
memo 0 = Seq.nil
memo g = minimumBy (compare ‘on’
[cons ¢ (t! (g-c¢)) | c<-

50, 100, 200]

cs,

g =

cs,
-- And for edit distance example:
edits' String -> String -> [String]
edits' cs1 cs2 = Seq.tolList $ table !
where table Array (Int, Int)
table = tabulate ((0, 0), (m, n))
memo Int -> Int -> LenList String
memo 0 j = Seq.inits $ drop (n - j)
memo i 0 = Seq.tails $ drop (m - i)
memo i j = minimumBy (compare ‘on’
[Seq.cons cs1' (table ! (i - 1, j))
, Seq.cons cs1' (Seq.map (c2:) (table !
, (if c¢1 == ¢2 then id else Seq.cons csl
(Seq.map (c2 :) (table ! (i-1, j - 1))
where ¢1, x2 = str1 (m - i), str2 (n - j)
csl' = drop (m - i) csi
length cs1, length cs2
str2 = fromString cs1,

(m, n)

cs2
csi

m, n =
strl,

6 Amortised Complexity
A deque splits list into two:

-- Xs = us ++ reverse sv in > Deque us sv <
data Deque a = Deque Int [a] [a]

tolList Deque a -> [a] -- O(n)

toList (Deque _ us sv) = us ++ reverse sv
cons a -> Deque a -> Deque a -- 0(1)

cons u (Deque n us sv) = Deque (n + 1) (u
snoc Deque a -> a -> Deque a -- 0(1)

snoc (Deque n us sv) v = Deque (n + 1) us (v

complexity)

1) + table ! (i -

Cs

c2 720

length)
c <= g

(i,3-1)))

")
)1

fromString cs2

us)

2)

(uncurry memo)

fromString cs2

Seq.length)
c <=g]

(LenList String)
(uncurry memo)

Seq.length)

sv

sv)

fromList [a] -> Deque a
fromList xs = Deque n us $ reverse vs
where n = Seq.length xs
(us, vs) = splitAd (div n 2) xs
-- However, we want minimal rebalancing:
-- null sv ==> length us <= 1; and vice versa
cons u (Deque n sv []) = Deque (n + 1) [u] sv
cons u (Deque n us sv) = Deque (n + 1) (u us) sv
snoc (Deque n [] us) v = Deque (n + 1) us [v]
snoc (Deque n us sv) v = Deque (n + 1) us (v : sv)
head (Deque _ [] [v]) = v -- 0(1)
head (Deque _ (u : _) _) =u -- 0(1)
last (Deque _ [u] []) =u -- 0(1)
last (Deque _ _ (v : _)) = v -- 0(1)
tail (Deque 0 _ _) = undefined -- 0(1)
tail (Deque 1 _ _) = nil -- 0(1)
tail (Deque _ [_] sv) = fromList (reverse sv)--0(n)
tail (Deque n (_:us) sv) = Deque (n-1) us sv-- O(1)
init (Deque 0 _ _) = undefined -- 0(1)
init (Deque 1 _ _) = nil -- 0(1)
init (Deque _ us [_]) = fromlList us -- 0(n)
init (Deque n us (_:sv)) = Deque (n-1) us sv-- 0(1)

tail & init appear O(n) but are not. Amortised complexity

is like a piggy-bank. We overpay and save every time we do
something cheap, so that we have pocket money to pay for

nice expensive tails. Cop;(x) < Aopi(x) - (@(x") - D(x)) where:

¢ Copi(x) is the cost of an operation opi on x.
Agpi(x) is the amortised cost of an operation opi.
@Ygs is a potential function. Largest just before some-

thing expensive, smallest just after something expensive.
For example, for tail we can use:

Phi (Deque n us sv) = max (length us - length sv) 0

7 Binary Lists
Natural numbers have a correspondence to lists:

data Nat = Z | S Nat

inc n =S n -- cons x xs = x : XS

dec (S n) =n -- tail (_ XS) = Xs

add Z n =n -- [] ++ ys = ys

add (S m) n =S (add m n) -- (x:xs)++ys=x:(xs++ys)

Instead of peano, we use binary, same for BinList:

data BList a = BList !Int [Maybe (Bush a)]

data Bush a | L a | F (Bush a) (Bush a)

instance Seq BList where
nil = BList 0 [] -- 0(
length (BList n _) = n -- 0f
head = (!! 0) -- 0
last xs = xs !! (length xs - 1) -- 0
fromList = foldr cons nil -- 0(n
xs ++ ys = foldr cons ys (toList xs) -- O
init = fromList init tolist -- 0(
null = (== 0) length == O

cons x (BList n bs) = BList (n+1) (inc (L x) bs)
where inc Bush a -> [Maybe (Bush a)]
(Bush a)] -- Amortised ~ 0(1)
inc t [] = [Just t]
inc t (Nothing:ts) = (Just t):ts
inc t (Just t':ts) =Nothing:(inc

(Ftt') ts)

(') BList a -> Int -> a -- 0(log n)

BList n ts !! i
| i <0 || i>n=error "Index out of bounds"
| otherwise = find ts i 1

where find [Maybe (Bush a)] -> Int

-> Int -> a

-- No values here, we must be further up
find (Nothing ts) i szT = find ts i (szT x 2)
findBush (Just t ts)

-- i is inside this bush!

| i < szT = index t i (szT “div® 2)

-- this is not the bush we are looking for

| otherwise = find ts (i - szT) (szT = 2)
index Bush a -> Int -> Int -> a
index (L x) 0 1 = x

-> [Maybe

33 index (F 1t rt) i szT 6 intersection s1 s2 = fromList $§ filter (member" s2 75 minValue (Node _ 1t x rt)= fst $ extractMin 1t x rt we can define the following counting system, where we can

34 | i < szT = index 1t i (szT “div" 2)) (toList st) 79 maxValue :: Ord a => Tree a -> a -- 0(log n) count our way through the list of elements and in O(n) end
£ | otherwise = index rt (i-szT) (szT *div" 2) o maxValue (Node _ It x rt)= fst § extractMax Lt x rt .y with a final "number” which can be turned into a tree.
3 A Poset []issimple, but Poset Tree is faster: 11 Random Algorithms
@ tail :: BList a -> Blist a —- ~0(1)? 10 Red Black Trees * Las Vegas: prob of being correct, but takes random time.
3¢ tail (BList n ts) = BList (n-1) (snd (dec ts)) 1data Tree a = Tip | Node !Int (Tree a) a (Tree a) RBTrees selfbalancein~(_’)(1),allowing for more bias. Here: ¢ Monte Carlo: better answer given more iterations.
39 where dec :: [Maybe (Bush a)] -> (Bush a, [Maybe (2 1 mkStdGen :: Int -> StdGen
Bush a)]) snode :: Tree a -> a -> Tree a -> Tree a. « Root is Black. Every Red node has Black parent. 2 l:undum :: Random a => StdGen -> (a, StdGen) .
40 dec (Just t : ts) = (t, ts) snode 1 x r = Node (1+max (height 1) (height r)) 1 x r « From root to anyTip,:'It e same num of Black nodes. 3 randomR :: Random a => StdGen -> (a, a) -> (a, StdGen
a1 -- Tree returned by recursion is 2x our size s quicksort :: Ord a => [a] -> [a])
42 -- So, break it in half and feed the rest back 6 quicksort = tolList . fromList @Tree 1blacken :: RBTree a -> RBTree a--makes R to B in 0(1) 4
@ dec (Nothing : ts) = let (f t t', ts') = dec ts 7balanced :: Tree a -> Tree a -> Bool-->THE INVARIANT< ,placken (Node R 1t x rt) = Node B 1t x rt sinside (x, y) = x~2 + y~2 <= 1
m in (t, Just t' : ts') s balanced 1 r = abs (height 1 - height r) <= 1 s blacken = id 6
grotr :: Tree a -> Tree a -- 0(1) 4 7montePi :: Int -> Double
8 Random Access Lists wrotr (Node _ (Node _ 11t x 1lrt) y rt) s —— Turn black node red and its children black smontePi !darts = go (mkStdGen 4) darts 0
If we have a BList with 2" -1 els, tail will be O(n). Instead, n = node 11t x (node lrt y rt) s balance :: Colour -> RBTree a -> a -> RBTree a -> owhere go :: StdGen -> Int -> Int -> Double
consider a list with no Nothings, RAList. A NonEmptyTree ' rotl :: Tree a -> Tree a -- 0(1) RBTree a -- 0(1) | o = 0 hiis = 4« ireminicgral Inside)
tai on+l g Is for depth 7. Every NETree is paired with rotl (Node _ 1t x (Node _ rlt y rrt)) 7 balance B (Node R (Node R a x b) y ¢) z d = Node R (f[omInt.eg[a] darts
contains € depth ery pa M = node (node 1t x rit) y rrt Node B a x b) y (Node B ¢ z d) 1 go gen n hits
its number of els. The invariance is that every el in the list ,, y,11 :: Tree a -> a -> Tree a -> Tree a -- 0(1) s balance B (Node R a x (Node R b y c)) z d = Node R (1 | inside p = go seed' (n-1) (hits+1)
has an increasing size, except for the first two trees, which i ball 1t x rt Node B a x b) y (Node B ¢ z d) 13 | otherwise = go seed' (n-1) hits
may be the same size. 7 | balanced 1t rt = node It x rt sbalance B a x (Node R (Node R b y c¢c) z d) = Node R (1 where (p, seed') = randomR ((0, 0), (1, 1)) gen
I (: : g |” Pre: height 1t > height rt + 1 R : Node B a x b) y (Node B c z d))~ Node A treap has priority and value. A randomized treap has
1data NETree = Tip a Node (NETree a) a (NETree a 19 height 11t >= height 1rt = rotr node 1t x rt w0 balance B a x (Node R b y (Node R ¢ z d)) = Node C s L
> data RAList = RAList !Int [(Int, NETree a)] x| otherwise = rotr $ node (rotl 1t) x rt Node B a x b) y (Node B ¢ z d) random priorities for pseudo-balancing:
3 instance Seq RAList where 21 where Node (_ 11t _ 1rt) = It 1 balance ¢ It x rt = Node ¢ 1t x rt 1data Treap a = Tip | Node Int (Treap a) a (Treap a)
4+ nil = RAList 0 [] -- 0(1) 22balR :: Tree a -> a -> Tree a -> Tree a -- 0(1) 12 > data RTreap a = RTreap STdGen (Treap a)
5 head = (!! 0) -- 0(log n) 23 balR 1t x rt 13 instance Poset RBTree where 3
6 last xs = xs !! (length xs - 1) -- 0(log n) 2« | balanced 1t rt = node 1t x rt 1w empty = Tip snodel :: Int -> Treap a -> a -> Treap a -> Treap a
7 length (RAList n _) = n == (1) 25 -- Pre: height 1t + 1 < height rt 15 singleton x = Node B Tip x Tip s nodeL p 1t@(Node 1p 11t u Irt) v rt
g8 null = (== 0) . length -- 0(1) 2 | height rrt >= height rlt = rotl $§ node 1t x rt 16 6 | p <= 1p = Node p It v rt
9 init = fromList . init . tolist -- 0(n) 27 | otherwise = rotl $ node 1t x (rotr rt) 17 member :: Ord a => a -> RBTree a -> Bool-- O(log n) - | otherwise = Node 1p 11t u (Node p lrt v rt)
w fromList = foldr cons nil -- 0(n) 28 where Node (_ rlt _ rrt) = rt 18 member x Tip = False snodeR :: Int -> Treap a -> a -> Treap a -> Treap a
11 xs ++ ys = foldr cons ys (toList xs) -- O(m) 20 glue :: Tree a -> Tree a -> Tree a -- 0(log n) 19 member x (Node _ 1t y rt) = case compare x y of snodeR p It u rt@(Node rp rlt v rrt)
12 30 glue Tip rt = rt 20 EQ -> True 10 | p <= rp = Node p 1t u rt
13 cons :: a -> RAList a -> RAList a -- 0(1) st glue 1t Tip = 1t 21 LT -> member x It 1 | otherwise = Node rp (Node p 1t u rlt) v rrt
1 cons x (RAList n ((s1, t1) : (s2, t2) : ts)) 32 glue 1t@(Node 1lh 11t 1x 1lrt) rt@(Node rh rlt rx rrt) o GT -> member x rt 12
15 -- The trees are equal size, so we can combine 3 | 1h < rh = let (x, rt') = extractMin rlt rx rrt o 13 height (RTreap _ t) = height' t
16 |s1==s2 = RAList (n+1) ((s1+s2+1, Node t1 x t2):ts) 3 in ballL 1t x rt' 24 insert :: Ord a => a -> RBTree a -> RBTree a 1 where height' Tip = 0
17 -- Otherwise, add a new tip s | otherwise = let (x, 1t') = extractMax 11t 1Ix 1lrt insert = blacken . insert' 15 height' (Node _ It _ rt) =
1 cons x (RAList n ts) = RAList (n+1) ((1, Tip x):ts) 36 in balR 1t' x rt 2 where insert' x Tip = Node _ Tip x Tip-- O(log n) s 1 + max (height' 1t) (height' rt)
19 37 27 insert' x (Node ¢ 1t y rt) = case compare x y of
20 tail :: RAList a -> RAList a -- 0(1) s instance Poset Tree where 2 EQ -> Node ¢ 1t y rt 1 instance Poset RTreap where
21 tail (RAList n ((1, Tip _) : ts)) = RAList (n-1) ts 9 empty = Tip -- 0(1) 29 LT -> balance ¢ (insert x 1t) y rt 19 empty = RTreap (mkStdGen 42) Tip
22 -- Split & discard top, making 2 trees of same size w0 singleton x = node Tip x Tip -- 0(1) 30 GT -> balance ¢ 1t y (insert x rt) 20 insert :: Ord a => a -> RTreap a -> RTreap a
23 -- Next list guaranteed to double the size of curr 41 height Tip =0 == (i) 31 21 insert x (RTreap s t) = RTreap s' (pinsert p x t)
24 -- Which preserves the invariant 22 height (Node h _ _ _) = h —— 0/(1) 32 delete :: Ord a => a -> RBTree a -> RBTree a--tspmo where (p, s') = random s
5 tail (RAList n ((s, Node t1 _ t2) : ts)) = RAList (n 4« tolist = Seq.tolList . go == @(m) 3% delete x = fromOrdList . List.delete x . tolist 2 pinsert :: Int -> a -> Treap a -> Treap a
- 1) ((s", t1) : (s', t2) : ts) m where go :: Tree a -> DList a 34 24 pinsert p x Tip = Node p Tip x Tip
% where s' = s ‘div’ 2 s go Tip = Seq.nil s toList :: RBTree a -> [a] > pinsert p x (Node q 1t y rt) = case compare x y of
27 16 go (Node 1t x rt) = go 1t ‘append’ : x (go rt) 4 tolList = Seq.tolList . go 2 EQ -> t
2 (!!') :: RAList a -> Int -> a -- O(log n) a7 a7 where go :: RBTree a -> DList a 27 LT -> nodelL q (pinsert p x 1t) y rt
29 RAList n ts !! i ¢ member :: Ord a => a -> Tree a -> Bool -- 0(log n): g go Tip = nil 28 GT -> nodeR q 1t y (pinsert p x rt)
30 | i <0 || i >=n = error "Index out of bounds" 49 member _ Tip = False -- as the tree is balanced g go (Node _ It x rt) = go 1t ‘append’ : x $ go rt o
31 | otherwise = find ts i 50 member x (Node _ 1t y rt) = case compare x y of 40 30 delete::0rd a=>a->RTreap a->RTreap a--0(log(n))?
2 where find :: [(Int, NETree a)] -> Int -> a 51 LT -> member x 1t 41 minValue (Node _ Tip x _) = x 31 delete x (RTreap s t) = RTreap s (delete' x t)
3 find ((sz, t) : ts) i 52 EQ -> True 422 minValue (Node _ 1t _ _) = minValue 1t 32 where delete' x Tip = Tip
34 -- This is our tree 53 GT -> member x rt 43 maxValue (Node _ _ x Tip) = x 33 delete' x (Node p 1t y rt) = case compare x y of
35 | i < sz = index t i ((sz - 1) ‘div’ 2) 54 insert :: Ord a => a -> Tree a -> Tree a --0(log n) 4 maxValue (Node _ _ _ rt) = maxValue rt 24 LT -> Node p (delete' x 1t) y rt
36 -- This is not our tree s insert x Tip = singleton x 45 35 GT -> Node p 1t y (delete' x rt)
37 | otherwise = find ts (i - sz) 56 insert x t@(Node _ 1t y rt) = case compare x y of s data Digit a = One a (RbTree a) | Two a (RBTree a) a 4 EQ -> glue p 1t rt
38 index :: NETree a -> Int -> Int -> a -- 0(log n) 57 EQ -> t (RBTree a) 7 glue::Int->Treap a->Treap a->Treap a -- O(log(n))?
3 index (Tip x) 0 0 = x 58 LT -> ball (insert x 1t) y rt a7 3 -- p is < the highest-priority of 1t and rt
40 index (Node t1 x t2) i sz 59 GT -> balR 1t y (insert x rt) s cons :: a -> [Digit a] -> [Digit a] s glue _ Tip rt = rt
41 | 1 == = X 60 delete :: Ord a => a -> Tree a -> Tree a --0(log n) 4 cons x ds = inc x Tip ds w glue _ It Tip = 1t
42 | i <= sz = index t1 (i - 1) sz' 61 delete _ Tip = Tip so where inc :: a -> RBTree a -> [Digit a] -> [Digit a]l 4 glue p (Node 1p 11t 1x Irt) rt =
13 | otherwise = index t2 (i - sz - 1) sz' 62 delete x t@(Node _ 1t y rt) = case compare x y of 51 inc x t [] = [One x t] 2 let (max, 1t') = maxView lp 11t Ix 1rt
a4 where sz' = (sz - 1) “div® 2 63 EQ -> glue 1t rt 52 inc x t (One y t' : ds) = Two x t y t' : ds 13 in Node p 1t' max rt
45 64 LT -> balR (delete x 1t) y rt s inc x t (Two y1 t1 y2 t2 : ds) = One x t : inc y1 (& minView::Int->Treap a->a->Treap a->(a, Treap a)
4 toList :: RAList a -> [a] -- O(n) 65 GT -> ballL 1t y (delete x rt) Node B t1 y2 t2) ds 45 minView _ Tip x rt = (x, rt)
a7 toList (RAList _ ts) = tolList (foldr ((++) . vals . 66 54 % minView p (Node g 11t 1x 1rt) x rt =
snd) nil ts) 67 -- Find the minimum element in a tree and return ss fromOrdlist :: [a] -> RBTree a o let (min, rest) = minView q 11t 1x lrt
4 where vals :: NETree a -> DList a the rest of the tree, 0O(log n) s6 fromOrdList = foldl glue Tip . foldr cons [] 8 in (min, Node p rest x rt)
49 vals (Tip x) = cons x nil e extractMin :: Tree a -> a -> Tree a -> (a, Tree a) & where glue :: RBTree a -> Digit a -> RBTree a s maxView::Int->Treap a->a->Treap a->(a, Treap a)
so vals (Node t1 x t2)=cons x ((vals t1)++(vals t2)) 69 extractMin Tip min rest = (min, rest) 58 glue t (One x t') = Node B t x t' so maxView _ 1t x Tip = (x, 1t)
7o extractMin (Node _ 11t Ix Irt) x rt=(m,balR t x rt) o glue t (Two x1 t1 x2 t2) = Node B (Node R t x1 t1 & maxView p 1t x (Node q rlt rx rrt) =
9 Posets il where (m, t) = extractMin 11t 1x Irt) x2 t2 52 let (max, rest) = maxView q rlt rx rrt
Partially ordered sets are gOOd for searching: 72 -- Find the maximum element in a tree and return 53 in (max, Node p 1t x rest)
the rest of the tree, 0(log n) When we construct a tree from a sorted list, we notice that 12 Ziopers
1class Pt?set set where‘ - 73 extl\actnax 88 Tre'e aTT> ;_1 7>' Tree. a -> (a, Tree a) when we represent the tree as a list of half trees (generated Azippgrpis the equivalent of an il(’mlor,asliding window:
2 [FOlnLlSt = ¥01d1 insert empty 74 extractMax rest max Tip = (max, rest) by taking all the subtrees where the roots are on the left-
3 singleton x = insert x empty 75 extractMax 1t x (Node _ rlt rx rrt)=(m,ball 1t x t) d spi h h h d nod h i type LiztZ a = ([a], [a])
4+ union s1 s2 = foldr insert s1 (tolList s2) 76 where (m, t) = extractMax rlt rx rrt han Splne)rwecanSGEt at when the red nodes appear, they »ftype BushZ a = (Bush a, [Either (Bush| a) (Bush a)il)

s diff s1 s2 = foldr delete s1 (tolList s2) 77 minValue :: Ord a => Tree a -> a -- 0(log n) are next to a black rooted partial-tree of the same size. Thus

