
1 Algorithm Cost
1 insert :: Ord a => a -> [a] -> [a]

2 insert x [] = [x]

3 insert x (y:ys) -- Assume ys is sorted.

4 | x <= y = x : y : ys

5 | otherwise = y : insert x ys

Cost Tinsert(0) = 1; Tinsert(n) = 1 + Tinsert(n − 1). By expan-
sion, this is O(n).

1 isort :: Ord a => [a] -> [a] -- O(n^2)

2 isort [] = []

3 isort (x:xs) = insert x (isort xs)

Tisort(n) = 1+Tinsert(n− 1) +Tisort(n− 1). In general:

1 T(k)=T(x)=0 -- Constants, variables

2 T(f e1 .. en) = T(f) e1 .. en + T(e1) + .. + T(en)

3 T(p ? e1 : e2) = T(p) + p ? T(e1) : T(e2)

T (f (g(x))) = T (f )(gx) +T (g)x
1.1 Normal Form
Lazy things are in weak headed NF and strict things are in
NF. e is in NF if:

• e = \x -> e’ and e’ is in NF.
• e = x and x is a normal variable.
• e = f x where f and x are normal.

WHNF doesn’t need normal lambda bodies.
1.2 Complexity Classes

f (n) ∈ o(g(n)) f ≺ g limn→∞
f (n)
g(n) = 0

f (n) ∈ O(g(n)) f ≼ g limn→∞
f (n)
g(n) <∞

f (n) ∈Θ(g(n)) f ≍ g 0 < limn→∞
f (n)
g(n) <∞

f (n) ∈Ω(g(n)) f ≽ g limn→∞
f (n)
g(n) > 0

f (n) ∈ ω(g(n)) f ≻ g limn→∞
f (n)
g(n) =∞

We can also define the sets as:

f (n) ∈ o(g(n))⇔∀δ > 0.∃m > 0.∀n > m.f (n) < δg(n)

f (n) ∈ O(g(n))⇔∃δ > 0.∃m > 0.∀n > m.f (n) ≤ δg(n)

f (n) ∈Θ(g(n))⇔ f (n) ∈ O(g(n))∧ f (n) ∈Ω(g(n))

f (n) ∈Ω(g(n))⇔∃δ > 0.∃m > 0.∀n > m.f (n) ≥ δg(n)

f (n) ∈ ω(g(n))⇔∀δ > 0.∃m > 0.∀n > m.f (n) > δg(n)

2 Lists

1 data [a] where

2 [] :: [a] -- O(1)

3 (:) :: a -> [a] -> [a] -- O(1)

4 (++) :: [a] -> [a] -> [a] -- O(n), n = length xs

5 [] ++ ys = ys

6 (x:xs) ++ ys = x : (xs ++ ys)

We can define folds on lists as:

1 concat :: [[a]] -> [a] -- O(mn)

2 concat [] = []

3 concat (xs:xss) = xs ++ concat xss

4 -- foldr f k [a,b,c] = f a (f b (f c k))

5 foldr :: (a -> b -> b) -> b -> [a] -> b

6 foldr f k [] = k

7 foldr f k (x:xs) = f x (foldr f k xs)

8 -- foldl f k [a,b,c] = f (f (f k a) b) c

9 foldl :: (b -> a -> b) -> b -> [a] -> b

10 foldl f acc [] = acc

11 foldl f acc (x:xs) = foldl f (f acc x) xs

12 xs ++ ys = foldr (:) ys xs

13 concat xss = foldr (++) [] xss -- O(mn)

14 concat yys = folfl (++) [] yss -- O(n^2m)

If f is assoc and k is a zero under f, then its a monoid:

1 -- e.g. Int: <0, +>, <1, *>

2 -- e.g. [a]: <[], ++>

3 class Monoid m where

4 mempty :: m

5 (<>) :: m -> m -> m

6 mempty <> x = x

7 x <> mempty = x

8 (x <> y) <> z = x <> (y <> z)

3 Abstract Datatypes

1 data Tree a = Leaf a | Node (Tree a) (Tree a)

2 values (Leaf x) = [x]

3 values (Node l r) = values l ++ values r -- O(n^2)

To do better than O(n2), define a sequence:

1 class Seq seq where

2 -- nil, cons, snoc, append, len, toList, fromList

3 instance Seq [] where --Can we do better than this?

4 -- nil, cons, toList, fromList are O(1)

5 -- snoc, append, len are O(n)

Since xs ++ (ys ++ zs) = (xs ++) . (ys ++) . (zs

++) [], we see bracketing has no effect on the result. Hence,
we can write:

1 -- Good for construction, bad for processing.

2 data DList a = DList ([a] -> [a])

3 instance Seq DList where

4 -- nil, cons, snoc, append, fromList are O(1)

5 -- len, head, tail, init, last, !!, toList are O(n)

6 -- Great for optimising:

7 values' :: Tree a -> [a] -- O(n)

8 values' = toList . go

9 where go :: Tree a -> DList a -- O(n)

10 go (Leaf x) = cons x nil

11 go (Fork l r) = go l `append` go r

4 Divide and Conquer
A DAC algorithm splits problems into smaller subproblems,
solves those into subsolutions, and recombines them. For ex-
ample, merge sort:

1 splitAt xs n = (take n xs, drop n xs) -- O(n)

2 splitHalf xs = splitAt xs (length xs `div` 2) -- O(n)

3 merge :: Ord a => [a] -> [a] -> [a] -- O(m + n)

4 merge [] ys = ys

5 merge xs [] = xs

6 merge xxs@(x:xs) yys@(y:ys)

7 | x <= y = x : merge xs yys

8 | otherwise = y : merge xxs ys

9 msort :: Ord a => [a] -> [a]

10 msort [] = []

11 msort [x] = [x]

12 msort xs = let (us, vs) = splitHalf xs

13 in merge (msort us, msort vs)

Tmsort(n) = Tlen(n) + TsplitAt(
n
2 ) + Tmerge(

n
2 ) + 2Tmsort(

n
2 ) ∈

Θ(n logn). (Best and worst!) Quicksort:

1 partition :: (a -> Bool) -> [a] -> ([a], [a])--O(n)

2 partition p xs = (filter p xs, filter (not . p) xs)

3 allLess :: Ord a => a -> [a] -> ([a], [a]) -- O(n)

4 allLess x xs = partition (< x) xs

5 qsort :: Ord a => [a] -> [a]

6 qsort [] = []

7 qsort (x:xs) = let (us, vs) = allLess x xs

8 in (qsort us) ++ [x] ++ (qsort vs)

Best case Tqsort(n) = TallLess(n − 1) + 2Tqsort(
n−1
2 ) + T++(1) +

T++(
n−1
2 ) =Ω(n logn). Worst case Tqsort(n) = TallLess(n − 1) +

Tqsort(0) + Tqsort(n − 1) + T++(0) + T++(1) =O(n2). It may be
better to take a random elem.

1 -- These two methods are O(N), making log N tree

2 foldArray f xs = go 0 (n-1)

3 where (arr, n) = (toArray xs, length xs)

4 go i j

5 | i == j = arr ! i

6 | otherwise = f (go i mid) (go (mid + 1) j)

7 where mid = (i + j) `div` 2

8 foldMerge _ [x] = x

9 foldMerge f xs = foldMerge f (mergePairs xs)

10 where

11 mergePairs (x:y:rest) = f x y : mergePairs rest

12 mergePairs [x] = [x]

13 mergePairs [] = []

5 Dynamic Programming
Write a bad solution recursively, catch sub-solutions.

1 -- Example: fibonacci (bad spatial complexity)

2 fib' :: Int -> Integer -- O(n)

3 fib' n = table ! n

4 where table :: Array Int Integer

5 table = tabulate (0, n) memo

6 memo :: Int -> Integer

7 memo 0 = 0

8 memo 1 = 1

9 memo i = table ! (i - 1) + table ! (i - 2)

10

11 -- Example: edit distance

12 type Text = Array Int Char

13 fromString :: String -> Text -- O(n)

14 fromString cs = listArray (0, length cs - 1) cs

15

16 dist'' :: String -> String -> Int

17 dist'' cs1 cs2 = table ! (m, n)

18 where table :: Array (Int, Int) Int

19 table = tabulate ((0,0),(m,n)) (uncurry memo)

20 memo :: Int -> Int -> Int

21 memo 0 j = j

22 memo i 0 = i

23 memo i j = minimum

24 [ table ! (i - 1, j) + 1

25 , table ! (i, j - 1) + 1

26 , table ! (i-1, j-1) + c1 == c2 ? 0 : 1 ]

27 where c1 = cs1 ! (m - i)

28 c2 = cs2 ! (n - j)

29 m, n = length cs1, length cs2

30 str1, str2 = fromString cs1, fromString cs2

5.1 Evidence of Work

1 cs = [1, 2, 3, 5, 10, 20, 50, 100, 200]

2 change :: Pence -> [Pence]

3 change g = table ! g

4 where table :: Array Pence [Pence]

5 table = tabulate (0, g) memo

6 memo :: Pence -> [Pence]

7 memo 0 = []

8 memo g = minimumBy (compare `on` length)

9 [ c : (table ! (g - c)) | c <- cs, c <= g ]

10 -- To keep track of work done:

11 change' :: Pence -> [Pence] -- O(n)

12 change' g = Seq.toList (table ! g)

13 where t :: Array Pence (LenList Pence)

14 t = tabulate (0, g) memo

15 memo :: Pence -> LenList Pence

16 memo 0 = Seq.nil

17 memo g = minimumBy (compare `on` Seq.length)

18 [ cons c ( t ! (g - c)) | c <- cs, c <= g ]

19

20 -- And for edit distance example:

21 edits' :: String -> String -> [String]

22 edits' cs1 cs2 = Seq.toList $ table ! (m, n)

23 where table :: Array (Int, Int) (LenList String)

24 table = tabulate ((0, 0), (m, n)) (uncurry memo)

25 memo :: Int -> Int -> LenList String

26 memo 0 j = Seq.inits $ drop (n - j) cs2

27 memo i 0 = Seq.tails $ drop (m - i) cs1

28 memo i j = minimumBy (compare `on` Seq.length)

29 [ Seq.cons cs1' (table ! (i - 1, j))

30 , Seq.cons cs1' (Seq.map (c2:) (table ! (i,j-1)))

31 , (if c1 == c2 then id else Seq.cons cs1')

32 (Seq.map (c2 :) (table ! (i-1, j - 1))) ]

33 where c1, x2 = str1 (m - i), str2 (n - j)

34 cs1' = drop (m - i) cs1

35 m, n = length cs1, length cs2

36 str1, str2 = fromString cs1, fromString cs2

6 Amortised Complexity
A deque splits list into two:

1 -- xs = us ++ reverse sv in > Deque us sv <

2 data Deque a = Deque Int [a] [a]

3 toList :: Deque a -> [a] -- O(n)

4 toList (Deque _ us sv) = us ++ reverse sv

5 cons :: a -> Deque a -> Deque a -- O(1)

6 cons u (Deque n us sv) = Deque (n + 1) (u : us) sv

7 snoc :: Deque a -> a -> Deque a -- O(1)

8 snoc (Deque n us sv) v = Deque (n + 1) us (v : sv)

9 fromList :: [a] -> Deque a

10 fromList xs = Deque n us $ reverse vs

11 where n = Seq.length xs

12 (us, vs) = splitAd (div n 2) xs

13

14 -- However, we want minimal rebalancing:

15 -- null sv ==> length us <= 1; and vice versa

16 cons u (Deque n sv []) = Deque (n + 1) [u] sv

17 cons u (Deque n us sv) = Deque (n + 1) (u : us) sv

18 snoc (Deque n [] us) v = Deque (n + 1) us [v]

19 snoc (Deque n us sv) v = Deque (n + 1) us (v : sv)

20

21 head (Deque _ [] [v]) = v -- O(1)

22 head (Deque _ (u : _) _) = u -- O(1)

23 last (Deque _ [u] []) = u -- O(1)

24 last (Deque _ _ (v : _)) = v -- O(1)

25

26 tail (Deque 0 _ _) = undefined -- O(1)

27 tail (Deque 1 _ _) = nil -- O(1)

28 tail (Deque _ [_] sv) = fromList (reverse sv)--O(n)

29 tail (Deque n (_:us) sv) = Deque (n-1) us sv-- O(1)

30 init (Deque 0 _ _) = undefined -- O(1)

31 init (Deque 1 _ _) = nil -- O(1)

32 init (Deque _ us [_]) = fromList us -- O(n)

33 init (Deque n us (_:sv)) = Deque (n-1) us sv-- O(1)

tail& init appearO(n) but are not. Amortised complexity
is like a piggy-bank. We overpay and save every time we do
something cheap, so that we have pocket money to pay for
nice expensive tails. Copi(x) ≤ Aopi(x)− (Φ(x′ )−Φ(x)) where:

• Copi(x) is the cost of an operation opi on x.
• Aopi(x) is the amortised cost of an operation opi.
• Φ(x) is a potential function. Largest just before some-

thing expensive, smallest just after something expensive.
For example, for tail we can use:

1 Phi (Deque n us sv) = max (length us - length sv) 0

7 Binary Lists
Natural numbers have a correspondence to lists:

1 data Nat = Z | S Nat

2 inc n = S n -- cons x xs = x : xs

3 dec (S n) = n -- tail (_ : xs) = xs

4 add Z n = n -- [] ++ ys = ys

5 add (S m) n = S (add m n) -- (x:xs)++ys=x:(xs++ys)

Instead of peano, we use binary, same for BinList:

1 data BList a = BList !Int [Maybe (Bush a)]

2 data Bush a | L a | F (Bush a) (Bush a)

3 instance Seq BList where

4 nil = BList 0 [] -- O(1)

5 length (BList n _) = n -- O(1)

6 head = (!! 0) -- O(log n)

7 last xs = xs !! (length xs - 1) -- O(log n)

8 fromList = foldr cons nil -- O(n)

9 xs ++ ys = foldr cons ys (toList xs) -- O(m)

10 init = fromList . init . toList -- O(n)

11 null = (== 0) . length -- O(1)

12

13 cons x (BList n bs) = BList (n+1) (inc (L x) bs)

14 where inc :: Bush a -> [Maybe (Bush a)] -> [Maybe

(Bush a)] -- Amortised ~ O(1)

15 inc t [] = [Just t]

16 inc t (Nothing:ts) = (Just t):ts

17 inc t (Just t':ts) =Nothing:(inc (F t t') ts)

18

19 (!!) :: BList a -> Int -> a -- O(log n)

20 BList n ts !! i

21 | i < 0 || i >= n = error "Index out of bounds"

22 | otherwise = find ts i 1

23 where find :: [Maybe (Bush a)] -> Int -> Int -> a

24 -- No values here, we must be further up

25 find (Nothing : ts) i szT = find ts i (szT * 2)

26 findBush (Just t : ts)

27 -- i is inside this bush!

28 | i < szT = index t i (szT `div` 2)

29 -- this is not the bush we are looking for

30 | otherwise = find ts (i - szT) (szT * 2)

31 index :: Bush a -> Int -> Int -> a

32 index (L x) 0 1 = x

1



33 index (F lt rt) i szT

34 | i < szT = index lt i (szT `div` 2)

35 | otherwise = index rt (i-szT) (szT `div` 2)

36

37 tail :: BList a -> BList a -- ~O(1)?

38 tail (BList n ts) = BList (n-1) (snd (dec ts))

39 where dec :: [Maybe (Bush a)] -> (Bush a, [Maybe (

Bush a)])

40 dec (Just t : ts) = (t, ts)

41 -- Tree returned by recursion is 2x our size

42 -- So, break it in half and feed the rest back

43 dec (Nothing : ts) = let (f t t', ts') = dec ts

44 in (t, Just t' : ts')

8 Random Access Lists
If we have a BListwith 2n−1 els, tailwill be O(n). Instead,
consider a list with no Nothings, RAList. A NonEmptyTree
contains 2n+1−1 els for depth n. Every NETree is paired with
its number of els. The invariance is that every el in the list
has an increasing size, except for the first two trees, which
may be the same size.

1 data NETree = Tip a | Node (NETree a) a (NETree a)

2 data RAList = RAList !Int [(Int, NETree a)]

3 instance Seq RAList where

4 nil = RAList 0 [] -- O(1)

5 head = (!! 0) -- O(log n)

6 last xs = xs !! (length xs - 1) -- O(log n)

7 length (RAList n _) = n -- O(1)

8 null = (== 0) . length -- O(1)

9 init = fromList . init . toList -- O(n)

10 fromList = foldr cons nil -- O(n)

11 xs ++ ys = foldr cons ys (toList xs) -- O(m)

12

13 cons :: a -> RAList a -> RAList a -- O(1)

14 cons x (RAList n ((s1, t1) : (s2, t2) : ts))

15 -- The trees are equal size, so we can combine

16 |s1==s2 = RAList (n+1) ((s1+s2+1, Node t1 x t2):ts)

17 -- Otherwise, add a new tip

18 cons x (RAList n ts) = RAList (n+1) ((1, Tip x):ts)

19

20 tail :: RAList a -> RAList a -- O(1)

21 tail (RAList n ((1, Tip _) : ts)) = RAList (n-1) ts

22 -- Split & discard top, making 2 trees of same size

23 -- Next list guaranteed to double the size of curr

24 -- Which preserves the invariant

25 tail (RAList n ((s, Node t1 _ t2) : ts)) = RAList (n

- 1) ((s', t1) : (s', t2) : ts)

26 where s' = s `div` 2

27

28 (!!) :: RAList a -> Int -> a -- O(log n)

29 RAList n ts !! i

30 | i < 0 || i >= n = error "Index out of bounds"

31 | otherwise = find ts i

32 where find :: [(Int, NETree a)] -> Int -> a

33 find ((sz, t) : ts) i

34 -- This is our tree

35 | i < sz = index t i ((sz - 1) `div` 2)

36 -- This is not our tree

37 | otherwise = find ts (i - sz)

38 index :: NETree a -> Int -> Int -> a -- O(log n)

39 index (Tip x) 0 0 = x

40 index (Node t1 x t2) i sz

41 | i == 0 = x

42 | i <= sz = index t1 (i - 1) sz'

43 | otherwise = index t2 (i - sz - 1) sz'

44 where sz' = (sz - 1) `div` 2

45

46 toList :: RAList a -> [a] -- O(n)

47 toList (RAList _ ts) = toList (foldr ((++) . vals .

snd) nil ts)

48 where vals :: NETree a -> DList a

49 vals (Tip x) = cons x nil

50 vals (Node t1 x t2)=cons x ((vals t1)++(vals t2))

9 Posets
Partially ordered sets are good for searching:

1 class Poset set where

2 fromList = foldr insert empty

3 singleton x = insert x empty

4 union s1 s2 = foldr insert s1 (toList s2)

5 diff s1 s2 = foldr delete s1 (toList s2)

6 intersection s1 s2 = fromList $ filter (`member` s2

) (toList s1)

A Poset [] is simple, but Poset Tree is faster:

1 data Tree a = Tip | Node !Int (Tree a) a (Tree a)

2

3 node :: Tree a -> a -> Tree a -> Tree a

4 node l x r = Node (1+max (height l) (height r)) l x r

5 quicksort :: Ord a => [a] -> [a]

6 quicksort = toList . fromList @Tree

7 balanced :: Tree a -> Tree a -> Bool-->THE INVARIANT<

8 balanced l r = abs (height l - height r) <= 1

9 rotr :: Tree a -> Tree a -- O(1)

10 rotr (Node _ (Node _ llt x lrt) y rt)

11 = node llt x (node lrt y rt)

12 rotl :: Tree a -> Tree a -- O(1)

13 rotl (Node _ lt x (Node _ rlt y rrt))

14 = node (node lt x rlt) y rrt

15 balL :: Tree a -> a -> Tree a -> Tree a -- O(1)

16 balL lt x rt

17 | balanced lt rt = node lt x rt

18 -- Pre: height lt > height rt + 1

19 | height llt >= height lrt = rotr $ node lt x rt

20 | otherwise = rotr $ node (rotl lt) x rt

21 where Node (_ llt _ lrt) = lt

22 balR :: Tree a -> a -> Tree a -> Tree a -- O(1)

23 balR lt x rt

24 | balanced lt rt = node lt x rt

25 -- Pre: height lt + 1 < height rt

26 | height rrt >= height rlt = rotl $ node lt x rt

27 | otherwise = rotl $ node lt x (rotr rt)

28 where Node (_ rlt _ rrt) = rt

29 glue :: Tree a -> Tree a -> Tree a -- O(log n)

30 glue Tip rt = rt

31 glue lt Tip = lt

32 glue lt@(Node lh llt lx lrt) rt@(Node rh rlt rx rrt)

33 | lh < rh = let (x, rt') = extractMin rlt rx rrt

34 in balL lt x rt'

35 | otherwise = let (x, lt') = extractMax llt lx lrt

36 in balR lt' x rt

37

38 instance Poset Tree where

39 empty = Tip -- O(1)

40 singleton x = node Tip x Tip -- O(1)

41 height Tip = 0 -- O(1)

42 height (Node h _ _ _) = h -- O(1)

43 toList = Seq.toList . go -- O(n)

44 where go :: Tree a -> DList a

45 go Tip = Seq.nil

46 go (Node lt x rt) = go lt `append` : x (go rt)

47

48 member :: Ord a => a -> Tree a -> Bool -- O(log n):

49 member _ Tip = False -- as the tree is balanced

50 member x (Node _ lt y rt) = case compare x y of

51 LT -> member x lt

52 EQ -> True

53 GT -> member x rt

54 insert :: Ord a => a -> Tree a -> Tree a --O(log n)

55 insert x Tip = singleton x

56 insert x t@(Node _ lt y rt) = case compare x y of

57 EQ -> t

58 LT -> balL (insert x lt) y rt

59 GT -> balR lt y (insert x rt)

60 delete :: Ord a => a -> Tree a -> Tree a --O(log n)

61 delete _ Tip = Tip

62 delete x t@(Node _ lt y rt) = case compare x y of

63 EQ -> glue lt rt

64 LT -> balR (delete x lt) y rt

65 GT -> balL lt y (delete x rt)

66

67 -- Find the minimum element in a tree and return

the rest of the tree, O(log n)

68 extractMin :: Tree a -> a -> Tree a -> (a, Tree a)

69 extractMin Tip min rest = (min, rest)

70 extractMin (Node _ llt lx lrt) x rt=(m,balR t x rt)

71 where (m, t) = extractMin llt lx lrt

72 -- Find the maximum element in a tree and return

the rest of the tree, O(log n)

73 extractMax :: Tree a -> a -> Tree a -> (a, Tree a)

74 extractMax rest max Tip = (max, rest)

75 extractMax lt x (Node _ rlt rx rrt)=(m,balL lt x t)

76 where (m, t) = extractMax rlt rx rrt

77 minValue :: Ord a => Tree a -> a -- O(log n)

78 minValue (Node _ lt x rt)= fst $ extractMin lt x rt

79 maxValue :: Ord a => Tree a -> a -- O(log n)

80 maxValue (Node _ lt x rt)= fst $ extractMax lt x rt

10 Red Black Trees
RBTrees self balance in ∼ O(1), allowing for more bias. Here:

• Root is Black. Every Red node has Black parent.
• From root to any Tip, ∃ the same num of Black nodes.

1 blacken :: RBTree a -> RBTree a--makes R to B in O(1)

2 blacken (Node R lt x rt) = Node B lt x rt

3 blacken = id

4

5 -- Turn black node red and its children black

6 balance :: Colour -> RBTree a -> a -> RBTree a ->

RBTree a -- O(1)

7 balance B (Node R (Node R a x b) y c) z d = Node R (

Node B a x b) y (Node B c z d)

8 balance B (Node R a x (Node R b y c)) z d = Node R (

Node B a x b) y (Node B c z d)

9 balance B a x (Node R (Node R b y c) z d) = Node R (

Node B a x b) y (Node B c z d)

10 balance B a x (Node R b y (Node R c z d)) = Node R (

Node B a x b) y (Node B c z d)

11 balance c lt x rt = Node c lt x rt

12

13 instance Poset RBTree where

14 empty = Tip

15 singleton x = Node B Tip x Tip

16

17 member :: Ord a => a -> RBTree a -> Bool-- O(log n)

18 member x Tip = False

19 member x (Node _ lt y rt) = case compare x y of

20 EQ -> True

21 LT -> member x lt

22 GT -> member x rt

23

24 insert :: Ord a => a -> RBTree a -> RBTree a

25 insert = blacken . insert'

26 where insert' x Tip = Node _ Tip x Tip-- O(log n)

27 insert' x (Node c lt y rt) = case compare x y of

28 EQ -> Node c lt y rt

29 LT -> balance c (insert x lt) y rt

30 GT -> balance c lt y (insert x rt)

31

32 delete :: Ord a => a -> RBTree a -> RBTree a--tspmo

33 delete x = fromOrdList . List.delete x . toList

34

35 toList :: RBTree a -> [a]

36 toList = Seq.toList . go

37 where go :: RBTree a -> DList a

38 go Tip = nil

39 go (Node _ lt x rt) = go lt `append` : x $ go rt

40

41 minValue (Node _ Tip x _) = x

42 minValue (Node _ lt _ _) = minValue lt

43 maxValue (Node _ _ x Tip) = x

44 maxValue (Node _ _ _ rt) = maxValue rt

45

46 data Digit a = One a (RbTree a) | Two a (RBTree a) a

(RBTree a)

47

48 cons :: a -> [Digit a] -> [Digit a]

49 cons x ds = inc x Tip ds

50 where inc :: a -> RBTree a -> [Digit a] -> [Digit a]

51 inc x t [] = [One x t]

52 inc x t (One y t' : ds) = Two x t y t' : ds

53 inc x t (Two y1 t1 y2 t2 : ds) = One x t : inc y1 (

Node B t1 y2 t2) ds

54

55 fromOrdList :: [a] -> RBTree a

56 fromOrdList = foldl glue Tip . foldr cons []

57 where glue :: RBTree a -> Digit a -> RBTree a

58 glue t (One x t') = Node B t x t'

59 glue t (Two x1 t1 x2 t2) = Node B (Node R t x1 t1

) x2 t2

When we construct a tree from a sorted list, we notice that
when we represent the tree as a list of half trees (generated
by taking all the subtrees where the roots are on the left-
hand spine), we can see that when the red nodes appear, they
are next to a black rooted partial-tree of the same size. Thus

we can define the following counting system, where we can
count our way through the list of elements and in O(n) end
up with a final "number" which can be turned into a tree.
11 Random Algorithms
• Las Vegas: prob of being correct, but takes random time.
• Monte Carlo: better answer given more iterations.

1 mkStdGen :: Int -> StdGen

2 random :: Random a => StdGen -> (a, StdGen)

3 randomR :: Random a => StdGen -> (a, a) -> (a, StdGen

)

4

5 inside (x, y) = x^2 + y^2 <= 1

6

7 montePi :: Int -> Double

8 montePi !darts = go (mkStdGen 4) darts 0

9 where go :: StdGen -> Int -> Int -> Double

10 go _ 0 hits = 4 * fromIntegral inside /

fromIntegral darts

11 go gen n hits

12 | inside p = go seed' (n-1) (hits+1)

13 | otherwise = go seed' (n-1) hits

14 where (p, seed') = randomR ((0, 0), (1, 1)) gen

A treap has priority and value. A randomized treap has
random priorities for pseudo-balancing:

1 data Treap a = Tip | Node Int (Treap a) a (Treap a)

2 data RTreap a = RTreap STdGen (Treap a)

3

4 nodeL :: Int -> Treap a -> a -> Treap a -> Treap a

5 nodeL p lt@(Node lp llt u lrt) v rt

6 | p <= lp = Node p lt v rt

7 | otherwise = Node lp llt u (Node p lrt v rt)

8 nodeR :: Int -> Treap a -> a -> Treap a -> Treap a

9 nodeR p lt u rt@(Node rp rlt v rrt)

10 | p <= rp = Node p lt u rt

11 | otherwise = Node rp (Node p lt u rlt) v rrt

12

13 height (RTreap _ t) = height' t

14 where height' Tip = 0

15 height' (Node _ lt _ rt) =

16 1 + max (height' lt) (height' rt)

17

18 instance Poset RTreap where

19 empty = RTreap (mkStdGen 42) Tip

20 insert :: Ord a => a -> RTreap a -> RTreap a

21 insert x (RTreap s t) = RTreap s' (pinsert p x t)

22 where (p, s') = random s

23 pinsert :: Int -> a -> Treap a -> Treap a

24 pinsert p x Tip = Node p Tip x Tip

25 pinsert p x (Node q lt y rt) = case compare x y of

26 EQ -> t

27 LT -> nodeL q (pinsert p x lt) y rt

28 GT -> nodeR q lt y (pinsert p x rt)

29

30 delete::Ord a=>a->RTreap a->RTreap a--O(log(n))?

31 delete x (RTreap s t) = RTreap s (delete' x t)

32 where delete' x Tip = Tip

33 delete' x (Node p lt y rt) = case compare x y of

34 LT -> Node p (delete' x lt) y rt

35 GT -> Node p lt y (delete' x rt)

36 EQ -> glue p lt rt

37 glue::Int->Treap a->Treap a->Treap a -- O(log(n))?

38 -- p is < the highest-priority of lt and rt

39 glue _ Tip rt = rt

40 glue _ lt Tip = lt

41 glue p (Node lp llt lx lrt) rt =

42 let (max, lt') = maxView lp llt lx lrt

43 in Node p lt' max rt

44 minView::Int->Treap a->a->Treap a->(a, Treap a)

45 minView _ Tip x rt = (x, rt)

46 minView p (Node q llt lx lrt) x rt =

47 let (min, rest) = minView q llt lx lrt

48 in (min, Node p rest x rt)

49 maxView::Int->Treap a->a->Treap a->(a, Treap a)

50 maxView _ lt x Tip = (x, lt)

51 maxView p lt x (Node q rlt rx rrt) =

52 let (max, rest) = maxView q rlt rx rrt

53 in (max, Node p lt x rest)

12 Zippers
A zipper is the equivalent of an iterator, a sliding window:

1 type LiztZ a = ([a], [a])

2 type BushZ a = (Bush a, [Either (Bush a) (Bush a)])
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