
1 Test Driven Development
Waterfall development involves many phases of
software development which are carried out sequen-
tially. Design is an early phase, before coding and
testing. Only one attempt is given to "get things
right". Today, most teams use agile, iterative meth-
ods. Cost of Change describes how new features be-
come more costly to implement as a project is devel-
oped (as it must work with all existing features). A
good code design:

1. Behaves Correctly (passes tests).
2. Minimises Duplication.
3. Maximises Clarity.
4. Has fewer elements.

In test driven development, we work in a cycle:
writing a test before the feature is implemented.
Here, we are designing an API as we are writing tests.

Write a
failing test.

Make
test pass. Refactor.

Behaviour driven development means that a set of
well written tests acts as an executable specification
for the software, and documents its behaviour. Here,
we think about behaviour rather than implementation
detail, as in TDD. To design an object this way:

1. Write down behavioural properties of the object.
2. Create the actual tests.
3. Implement the code. Repeat.

// FibonacciSequence

// - defines the first two terms to be one

// - each term equal to the sum of the previous

two

// - ...

public class FibonacciSequenceTest {

@Test

public void definesTheFirstTwoTermsToBeOne() {

...

}

@Test

public void

hasEachTermEqualToTheSumOfThePreviousTwo() {

...

}

}

2 Refactoring
Refactoring improves code’s design without chang-
ing its behaviour. In TDD, we should only refactor in
green state (we guarantee if we break anything its our
fault). Technical debt is the implied cost of choos-
ing an easy or quick solution now instead of using
a better, more sustainable approach that would take
longer.

3 Objects & Mock Objects
Inter-object communication can be thought of as
messages instead of method calling. This is visual-
ized in a UML Sequence Diagram. Methods fall into
two categories: commands (no return) and queries
(return).

An object graph contains value objects which usu-
ally contain data and little functionality, and interac-
tion objects. When writing tests, we focus on a single
object, whose collaborators have a particular respon-
sibility which is seen by the caller object (interfaces).
Inward messages to our test object are provided by
the test, but outward messages must be sensed by a
mock object. For example with JMock:

@Rule public JUnitRuleMockery context = new

JUnitRuleMockery();

Chef pastryChef = context.mock(Chef.class);

HeadChef headChef = new HeadChef(pastryChef);

@Test

public void delegatesPuddingsToPastryChef() {

// Expectation is set

context.checking(new Expectations() {{

exactly(1).of(pastryChef).order(PUDDING);

}});

// Expectation should be met

headChef.order(CHICKEN, PUDDING);

}

We can also do:

context.checking(new Expectations() {{

// Any value

oneOf(obj).method(with(any(Clazz.class)));

// Specified Return

allowing(summariser).summarise(a);

will(returnValue(List.of(topic1, topic2)));

// Counting

oneOf(alice).alert(a);

never(bob).alert(a);

}});

4 Reuse & Extensibility
Programming patterns are solutions to common
problems - ways to do stuff in a language. The tem-
plate method pattern means extracting a superclass
to minimise duplicated code. Modules should be open
for extention but closed for modification (Open-closed
principle).

AbstractClass
templateMethod()

operation1()
operation2()

ConcreteClass1
operation1()
operation2()

ConcreteClass2
operation1()
operation2()

We aim for a low coupling between classes. Affer-
ent coupling is how many other classes use it (re-
sponsibility). Efferent coupling is how many other
classes it uses (independence). The strategy pattern
delegates to a collaborator rather than subclass:

Context
strategy

Strategy
operation()

Strategy1
operation()

Strategy2
operation()

5 Designing for Flexibility
Stability depends on a balance of independence and
responsibility. A bad design is:

• Rigid - hard to understand / change.
• Fragile - unstable.
• Immobile - hard to reuse the code.

Encapsulation reduces fragility, making code more
stable; a method of information hiding. The law of
demeter states:

• Each unit has limited knowledge about others.
• Each unit should only talk to its friends.
• Only talk to your immediate friends.1

6 Object Creation & Dependencies
Factory Methods create objects. Unlike construc-
tors, they have a descriptive name. (e.g. Virtual-

Machine.optimisedForHighCpu();). A private con-
structor can force this. Additionally, these may dele-
gate to runtime allowing for additional functionality.

Abstract Factory Pattern: we can define an interface
for a factory method called a factory pattern. Use-
ful when we want many factory patterns for similar
objects.

Builders are separate objects that first gather param-
eters, then produce a valid object.

Singletons ensure a class only has one instance, and
provide a global point of access to it. This should be
used when absolutely required!

We can avoid unecessary dependencies by creating
an interface. For example, if Switch activates Light,
instead of referencing directly, we can pass in a De-

vice into the consturctor of Switch. Singletons create
a dependency!
7 Code Metrics
We can use graphs or matrices to visualize depen-
dencies. This is useful as formations such as cyclic
dependencies lead to tight coupling and immobility
of code. Cyclomatic complexity counts nodes and
edges in CFG of a program, counting possible exe-
cutions as a measure of complexity. In general, if it
looks bad, it is.

An ABC metric counts assignments, branches and
conditions. We can use version control to see changes
in metrics over time. We can also see turbulence
of files: how often they get changed. Plotting tur-
bulence against complexity can identify problem
points. We can also look at which files were changed
in the same commit.

8 Interactive Applications
To give control to the user we use events. An ob-
server pattern registers an object to be notified when
an event occurs.

Subject
observers: List

addObserver(o)
removeObserver(o)
notifyObservers

Observer
update(subject)

An example of this is:

ActionListener
actionPerformed(event)

ConcreteActionListener
actionPerformed(event)

JButton
listeners: List

addListener(l)
removeListener(l)

...

Gui
buttons: List

The model-view-controller pattern splits apps into
data, display and user input respectively:

Controller
triggerChange()

View
updateDisplay()

Model
businessRule()

In this model:

• Strategy Pattern - view uses controller, to which it
delegates decisions and input handling. Controller
the controls interaction with the model.

• Composite Pattern - view contains composite UI
components. The controller updates the root, and
this propogates through the tree.

• Observer Pattern - model is observable and views
are observers.

9 Systems Integration
An adapter pattern is a wrapper around a class to
change its interface to an expected one: delegation.
A client requests a service, but despite implement-
ing service the adapter has no behaviour of its own:

Client
service: Service

doSomething()

Adapter
service: Adaptee

request()

Adaptee
performAction()

Service
request()

1



A decorator adds additional functionality:

Client
service: Service

doSomething()

Decorator
service: Service

request()

Adaptee
request()

Service
request()

A facade does the opposite, removes functionality.
A proxy has the same structure as a decorator, but
instead the functionality it adds is protection to the
Adaptee. A caching pattern reduces latency:

Client
service: Service

doSomething()

CachingProxy
service: Service

map: Map<Query, Result>

request()

Adaptee
request()

Service
request()

10 Legacy Code
A legacy system is important software you have inher-
ited. One of the first things to do is to make a graph
of the code’s dependencies (and their versions).

When changing the code, we want to preserve exist-
ing behaviour as much as possible. To give us confi-
dence, we unit test at the micro level, and system test
at the macro level.

• A seam is a place where you can alter behavior in
your program without editing in that place. Every
seam has an enabling point, a place where you can
make the decision to use one behavior or another.

• We break dependencies to sense when we cant ac-
cess values our code computes. This involves re-
placing a dependency at a seam with a test imple-
mentaiton.

11 Distribution & Remoting
We split an app into components to split up compu-
tation when running, and development into teams.
In this case, it is common to have client compo-
nents and service components. In recent years, apps
have been using microservice archs, a large number
of small services that cooperate to provide the full
system.

To communicate, we usually use HTTP and REST,
and pass data as XML or JSON.

The Richardson Maturity Model describes & cate-
gorises webservices based on how much they take
advantage of URIs, HTTP and hypermedia.

0. A Level 0 service uses HTTP, without using URIs
to identify resources, different HTTP methods to
describe actions or hypermedia. They normally
use a single URI to identify the service endpoint,
to which requests are posted. Each request con-
sists of a document or set of parameters to de-
scribe the request, but go to the same URI by the
same method. An example is SOAP (Simple Ob-
ject Access Protocol), which wraps a XML docu-
ment describing a request.

1. A Level 1 service makes more use of
URIs, but does not take advantage of
all HTTP methods. Here, verbs ap-
pear in URIs (e.g. GET https://tennis-

club.com/bookings/create?member=tim).
2. A Level 2 service uses different URIs and re-

sponds to different HTTP methods. They also
send appropriate HTTP status codes.

3. A Level 3 service is a fully RESTful service. It
builds on level 2, but also contain hyperlinks to
other resources a client can follow.

12 Agile
Agile is an alternative to waterfall development, an it-
erative method to revise and refine the design as new
features are added. Work is done in short iterations,
and changing plans and reprioritising requirements
is common. We release the first, simple version as
quickly as possible, and then improve it.

Continuous Integration keeps the master branch at
a state where it could be deployed any time, by fre-
quently merging into master. This is often auto-
mated with automated builds, that compile, run tests
and package for release. This is often done on a ded-
icated CI server. Often, the builds themselves will
be further tested in a production-like environments
before they are shipped.

2


