1 Register Machines
A reg machine instr is of format:

Ly :Rf — Ly
Ly Ry =Ly, L,
Lz :HALT

On subtract, jump to first iff R, > 0. A config-
uration has form (I,rg,--r,) where [is the cur-
rent label and r; is the contents of R;. A compu-
tation is a finite seq of configs starting with cg,
ending in a halting config or erroneous config.
Regmachs computation is deterministic, so the
relation between initial and final configs is a

partial func (Y{x,p) € f.[(x,9") e f = p=7']).

fx)=» (o) ef

fol dyeY.[f(x)=y]
f0l e Y [f(x)=y]
X—-Y All partial funcs (X to Y)
X->Y All total funcs (X to Y)

A total func: Vx € X.[f(x) |]. A partial func f is
regmach computable if 3 regmach M with n+1
regs s.t. ¥(x,---,x,) € N".¥y € N the computa-
tion of M starting with Ry = 0,Ry =x1,---,Ry =
xp, halts with Rg =y iff f(xq1,---,x,) = v.

Pairs can be encoded as {x,y) = 2%(2y+1) and
(x,9) 2 2%(2y +1) - 1. where (-,-) is a bijection
N2 — N* and (.- is a bijection N2 — N. Observe
0b{x,y) = Oby1+x 0s and Ob{x,) = Oby0 + x 1s.
Lists may be encoded with pairs with [[]] =X
and [x 112 (x,[1), giving a bijection I - [I]
from N to N. For example, [1,2,3] is encoded as
0b100010010.

Programs: [P1£ [[[Io7,+,[I,1]] where [R} —
L2 (2i,j), [Ry = Lj, L] 2 (2 +1,(j,k))T and
[HALT] £ 0. Its easy to show any x decodes to a
unique instruction, so any program index x € N
decodes to a unique program.

T T
Ko | [k—r
|
3
(a) Zero Ry + ST RY
| K 1
3
(b) Add R, to R,
| |
T T
~
| Rp+=R1 | | R0+:R2J RT
| |
T T

(c) Copy Ry to R, (d) Mult R; by R; to Ry

B S Sk
T
L+

NV

Z+

(e) Push X to stack L

s nr—zr
* TINENL
__>X—p z+ X+ L+

(f) Pop X from stack L

2 Halting Problem

A RM H decides the Halting problem if
Ve,ay,---a, € N, starting H with Ry = 0,R; =
e,Ry = [[ay,--,a,]] always halts with Ry =1
iff the RM prog e halts when started with Ry =
0,R; =ay, --R,; =a,. We z no such H exists:

1. Assume H decides the Halting problem. Let
H’ replace START in H with START;Z :=
Ri;push Z to Rj.

2. Let C replace HALT in H’
zero Ry;HALT, let ¢ be the index of C.

3. C started with Ry = c halts iff H’ started
with Ry = ¢ halts with Ry = 0, iff H started
with Ry = ¢,Ry =][c]] halts with Rg = 0, iff
prog(c) = C started with Ry = ¢ doesn’t halt.
K

with

Ve € N.p, € N —» N is part func computed by
regmach prog e: Vx,y € N.¢,(x) = p holds iff the
computation of prog(e) with Rg = 0,Rq = x halts
with Ry = y. Thus, e — ¢, defines a surjec-
tion from N to all computable part funcs from
N — N (countable), but N — N is uncountable,
and contains uncomputable funcs.

The characteristic func of SCNis yg e N> N
R {1 ifxes

given by xgs(x) = . . Sisdecidable
0 otherwise

if xs is computable. To prove S is undecidable,
show its decidability implies the decidability of
the halting problem.

3 Turing Machines

Turing Machine M = (Q,%,s,0), of states Q,
possible tape symbols X, initial state s € Q and
transition funcde (QxX)— (QxEXx{LR}). A
configuration (g, w, u) has current state g € Q,
left / right tape content w,u € X*. Initial config
(s, e, u).

We can get the first and last symbols with:

. _Nav) ifw=a-v
flrSt(w)_{(u,e) fwee

_Nav) ifw=v-a
last(w)= {(u,e) ifw=e

Given M = (Q,%,s,6), define (qw,u) —p
(q’,w’,u’y where first(u)=(a,u’):

5(g,a)=(q’,a’,L) A last(w) = (b,w’)
(g w,u) >p g’ w’, ba’u’)
3(q,a)=(q",a",R)

@,y =g (@ wd iy

e If state q, a is read from tape, and & says move
left, mach moves to q’, writes a’ to tape, and
moves left.

e If state q, a is read from tape, and & says move
right, mach moves to q’, writes a’ to tape, and
moves right.

{(gw,u) is in normal form if &(q,a) T for
first(u) = (a,u’). A computation of M is an
infinite config seq where cg = (s,€,u’) and Yi €

N.[¢;j =M ciy1]- It halts iff the seq is finite i.e.
the last config is in normal form. e.g. graphical
representation of M:

0—>1,R
.= R ; .—0,L)
s q q 1—1,L
1—-1,R

| We can draw 6 in a table.

We can prove any turing mach M can be
mapped to a regmach:

1. Fix numerical encoding of M’s states, sym-
bols, tape and configs.

2. Implement 6 as a regmach prog.

3. Implement a regmach program to repeat-

edly apply —.
A tape over ¥ = {U,0,1} codes a list of numbers
[, ,mg] as:
RTINS B SRS PO B R
—_— —— —_— ——
all L’s ny ny all L’s

f € N" — N is turing computable iff IM s.t.
starting M on a tape coding [xj,--x,] halts iff
f(x1,--+x,) | and in that case the final tape
holds a list whose first element is y where
f(x1,+--xy) = y. A part fun is turing computable
iff it is regmach computable.

4 Lambda Calculus

A-calc is var | abstraction | application.

M2 x| \x.M | MM

Free vars are not bound in an abstraction. Terms
with no free vars are closed or grounded:
FV(x) = {x}
FV(Ax.M) = FV(M) — {x}
FV(MN)=FV(M)UFV(N)
For a-equivalence, we can rename bound vars
without changing term meaning (e.g. Ax.x =,
Av.v). To help, we can substitute M[N/x], replac-
ing x in M with N. We cannot substitute bound
var, and must rename conflicts.
p-reduction means applying a func to an arg
(e.g. (Ax.x)y —p). More formally (Ax.M)N —g
M][N/x]. Rules for —g:
M —g M’
AxM —g Ax.M’
M —yp M’ N —g N’
MN —g M’N MN —p MN’
M=g M'AM" —g N'AN"=4 N
M —p N

A normal form has no g-red. Any term that has
one will reach it. A multi step p red —% en-
forces the reflexive transitive closure of p-red
under a-conv:

M=o M’ M*)ﬁM”/\M”*)%M,
M_); M’ M—»; M’

Confluence states YM, M, Mp.[M H% M A

M=% My = IM'[My —~§ M’ AMz -5 M)
This can prove that normal forms are unique.
p-equiv is the smallest equiv relation con-
taining —pg with symmetry: M; = My &
HM"[MI 4’; M’ AMj —)2 M’].

A redex is a reductible expr. Not all terms have
a NF (e.g.(Ax.xx)(Ax.xx)), and some terms only
have a NF under certain reduction strats. For
redex E = (Ax.M)N:

¢ Redexes in M or N are inside E.

e Eisoutside any redexes in M or N.

¢ Eis outermost if no redexes contain it.
e Eis innermost if it contains no redexes.

There are many reduction strategies:

1. Normal Order reduces leftmost, outermost
redex first. Always terminates at a NF, but
can ppform computations on unevaluated
func bodies.

2. Call by Name reduces leftmost, outermost
redex first, ignoring inside A abstractions.
Does not always reduce to NF, evals args
when needed.

3. Call by Value reduces leftmost, innermost
redex first, ignoring inside A abstractions.
Does not always reduce to NF, evals args be-
fore passing to func body.

A part func f : N — N is A-definable iff 3
closed M s.t.f(x1,-:xy) =y © Mxp,---xp =3y
and f(x1,---x,) T© Mxq,---x, has no NE. The
Church-Turing thesis states f is A-computable
iff it is A-definable, and hence turing mach com-
putable and regmach computable.

Church numerals are defined as n £
AfAx(f((fx)™). To encode m + n, we
place the body of n into that of m: mf(nfx).
Hence:

e plus éﬁ AmAnAf Ax.mf (nfx) Adds Church
numerals m and n

e mult éﬁ AmAnAf.m(nf) Multiplies Church
numerals m and n

* exp élg Am.An.nm Exponentiates Church nu-
merals as m"

* succ é‘g AnAf. Ax. f(nfx) Returns the succes-
sorof n(ie, n+1)

¢ pred élg AnAf Ax.n(Ag.Ah h(gf))(Au.x)(Au.u)
Computes the predecessor of n, clamping at 0

* sub éﬂ Am An.npredm max (0,1 — m)

o ifz éﬁ Am.Axy. Axpy.m(Az.xp)xy xq if m =0,
otherwise x;

¢ double éﬁ AnAf Ax.n(f o f)x

e div éﬂ Y (Ar.Am.An.
ifz(submmn)zero(A_ succ(r(submn)n))) Re-
turns [m/n|

¢ mod éﬂ Y (Ar.Am.An.
ifz(submn)m(A_.r(submn)n)) Remainder of
m divided by n

e pair éﬁ Avyvy.(Ap.pv1vy)

e fst éﬁ Ap.p(Awiwy.wy)
¢ snd éﬁ Ap.p(Awiwr.wy)

Common combinators (no free
14 BAx.x
K2 BAxy.x
T BAxyz.xz(yz)
T2 BAxy.yx
= BAxyz.xzy
BZ BAxyz.x(yz)
B’ £ BAxyz.y(xz)
W£ BAxy.xyy

vars) are:

<|=|[Rlw|o|d|n|x|—~

Y £ BAf. (Ax.f (xx))(Ax.f (xx))

For example, we define recursive fact é,g
An.ifz n 1 (mult n (fact(pred n))). In-
stead, we could use the Y-combinator,
removing recursion. Then: fact éﬁ
Y(Af-An.ifzn1l (multn(f(predn)))).

5 Operational Semantics

While lang is defined as:

BeBool £true|false|E| =5 E5|Ey <s Ep
|B1&sBa|—sB

EcExp2x|n|E; +sEy s.t. xeVar,NeN

CeCom&x:=E|if B then Cj else Cp
|Cy; Ca|skip|while B do C

We also define a smaller SimpExp as E €
SimpExp £ n|Eq +5 Ep. A big step semantic
< SimpExp x N where E || n means E evals to
n (final answer):

B-NUM——
NUM_—

Eylm Exlm

B-ADD-L¥ "1 2272
Ey+sEx n3

n3 =mny+np

It is determinant VYE € SimpExp.Vnj,np €
N.[E|n; AE | ny = ny =np] and total VE €
SimpExp.3n e N.E || n.

An example derivation tree is:

01 sro1]=
(x:=x+1,[x—> 0] [x+> 1]
(loop(x:=x+1),[x—0]) I s”

.
F

A small step semantic —»C SimpExp x SimpExp
where E — E’ means E reduces to E’. To eval,
use these rules in-order:

E1 = E|

S-LEFT ———
Ej +sEp > Ej +5 Ep

Ey — Eé
S-RIGHT ————+——
n+sEy > n+s E;

S-ADD n3 =ny +ny

ny +gny —n3

A reflexive transitive closure E —* E’ holds iff
E =E’ or 3 a finite seq. E — -+ —> E’. Eisin
normal form iff BE’.E — E’. — is: Determin-
istic VE,Eq,Ey.[E > E] NE - Ep = Ej = E].
Confluent VE,E1,E>.[E - Ey AE 5" Ep =
AE’.[E; —* E’AEy —* E’]]. Weakly Normalized
VYEAE'.[E »* E’ AE’ is normal]. Strongly Nor-
malized VE.[# inf seq. Ey,---,E, s.t.Yi € N.E; —
E;;1]. Has Unique NF VE,E{,Ey.[E »* E1 A
E > Ey AE1,E; inNF = E; = Ep]. We can
relate YE € SimpExp.¥n e N[E || n & E —* n].

State £ Var =~ N (e.g. s1 = (x—1)). A configu-
ration is (E,s). A state update:

n ifu=v

s(u) otherwise

slv > n)(u) = {

—e, >y, —¢ are deterministic & confluent:

(E1,8) —¢ (E],8")
7
1*sE2, e s Eo,s’
(E1 +5Ep,s) — <E1+ Ej,s’)
(E,;s) e (E',s")
EXPR n+g E,s) >, (n+sE’,s’
S e S

EXP.VAR s(x)

EXP.L

(x,8) = (n,s) "=

EXpADD—m8 = +
(1 45 12,5) =g (nz,s) 0 T2
(E,s) —¢ (E’,s")

ASS.EXP
S8 (x:=E,s) > (xu=E’,s’)

ASS.NUM (x = 1,5) —¢ (D, 5[x > n])

(C1,8) = (C1,8")
(C1;Ca,5) = (Cy 5 Cay8")
SEQ.SKP

SEQ.L

(F;C,5) = (Cys5)

CND.T
(tt ? Cp:Cy,s) —¢ (Cy,5)

CND.F

<ff ? Cp: C2,s> —c <C2,S>
(Bs) =y (B,
<B ? C1 :Cz,s) —¢ <B’ ? C1 :Cz,s’)

CND.B

WHILE

(0B:C,s) > (B? (C;§4B:C):9,s)

Answer configs are of form (n,s), (bv,s), or
(&,s). Stuck configs are non-answer NF con-
figs. —. is not normalizing, e.g. § tt: @.

An op is strict if it needs to eval an arg. E.g. +;
is strict, and &g is left-strict. &g:

B; — B}
B1&sBy — Bi &sBy

ff&;By — ff tt&sBy — By

6 Inductive Proofs

An inductive principle on SimpExpr is:

VYneN.P(n)

AVE{,Ey.[P(E1) AP(E2) = P(E; +5 E2)]
AVE1,Ey.[P(E1) AP(E2) = P(Eq x; E3)]
= VE.P(E)

1. Base Case state to show and prove for
each case. Ass arb LHS, and prove RHS.

2. Inductive Case state to show for i + 1th.
Then state inductive hypothesis assum-
ing ith, or j < i+ 1th. Prove each case.
The inductive hypothesis are constructed
from the top of a rule.

Base Case for E =nand S(E) = n:

To Show Vn € Z.Ys € State.Ym € Z.[---]. ONE
LESS RESRICTION THAN WHAT WE ARE
PROVING

(@) ooo

Inductive Case for E = Ej + Ep and S(E] +
Ep)=S8(E1)+S(Ep):

Take Eq, E, arbitrary.

Inductive Hypothesis: Vs € State.Vm €
Z.[---]. ONE LESS RESRICTION THAN
WHAT WE ARE PROVING

To Show: Same as in base case.

(9) -

7 Denotational Semantics

An expr ctx C¢ £ .|E +5 C®|CE +5 E|--- where -
is the ctx hole (e.g. C°[] = -+, 2). Ctx appli-
cation is done by filling the hole C¢[E], defined
recursively as:

(NEIZE
(C®+s E')[E] & C°[E] +s E/
(E’ +5 C®)[E] 2 E +¢ C°[E]
This allows to combine EXP.L and EXP.R:
(E,s) —¢ (E',s)

EXPE
(Ce[E] s) = (CE[E’]s")
Weak contextual equivalence means
Ei ~ Ep & Vn € N[E>"neEy—*nl,
A

contextual equivalence means Ej = E; =
VC[L[C[E;] ~ C[E]].

Denotational semantics describe the meaning
of a prog. Interpretation [[_]] € SimpExp x N
over a semantic domain N:

[n] £ n
[E1 +s E21 2 [E1]+ [[E2])

We can now prove properties on +;. Also,
we can define a func between meanings:
vCeaf C N2 [[[C?[E]] = f([E])]. Consequently,
YCCVEL Eo[[[E1]l = [E2]] = [C°[E1]] =
[[C¢[E2]])], and hence [[E]] = n < E || n. Also,
E| =E; & [E1)) = [E:])

Let X be the set of all states, and ¥ X U {1}.
Thesemantic domain of commands is given by
the set of state transformers S, 2 [X - %,], a
set of total functions that take an initial state,
and return either a final state of 1. Similarly,

S;2[X—>N,]and S, £[X > B,].
[L]1¢: Exp — S, is defined as:
[(s) 2 n
()¢ (5) 2 sepup (x)(s)

[[E1 +5 E2]l (5) £ seprus(IE1 11, [E21)(s)

Lookup sel,,p(x)(s) = {TX) Z(xvil
Addition seplus(e1,€2)(s) =
e1(s)+ea(s) er(s)d Aea(s) |
n o.w.

[LL]I° : Com — S, is defined as:
[[x 2= E] (s) & scasg ([ET°, %)(s)
[2](s) 2
(€13 C2]I (5) 2 stseq ([C1]E, [C2])()
[B2C1 : Co]* (5)] 2 stepa ([B]",
€11, [C20)(6)
([0 B: CI () 2 ([B]", [CI°)s)

Assignment SCasg (€,%)(s) =
sfxe(s)] e(s)d
n 0.w.
Sequencing sCseq(c1,€2)(s) =
{62(61 (5) cals)d
1 0.w.
Conditional SCend (b,c1,c2)(s =
c1(s) b(s) | Ab(s) = tt

c1(s) b(s) L Ab(s)=ff
€L o.w.

styhi (b, €) = stepd (b, Steeq (¢, sty (b, €)), stsgp), but
this is not a definition. Instead:

Assume F:(A—>A|)—>(A—A,):

1. Define seq Vi e N.f; : A — A| where fy &
Land fii] £F(f).
2. Define func foo : A > A} st: f(a)
a’ 3Fi.[fia)=a’= 1]
1 ow
3. AssYia.[fi(a) |= fiy1(a) = fi(a)].

By fixpoint theorem, fo, is a fixpoint of F.
For any other fixpoint g of F, Va.[fs(a) |=
foola) =g(a)].

W) £ Stend (b, Stseq (¢, Cw), Stskp), 80
scyni(b,c) is a fixpoint of W.

1. Define Viw; : S, where wy £ 1 and
A
wit] = W(wj).
2. Define w, : S, where:

TS . =
weols) 2 j_ Olw[wz(s) s = 1]

3. VseXass wj(s)=wj1(s)=w;(s).
4. By FT, scypi(b,c) = weo-

8 Hoare Logic

A formalism relating the initial and terminating
state of a program. Written with command C,
precond P and postcond Q. It is a deductive
proof system of triples {P} C [Q}. Assertion
lang is a lang for defining state predicates and
their semantics. It is an instance of first order
logic with equality, with values as integers and
assertions as properties of while statements:

veVarséidlidlog
teTerms £ v
P,QeAss 2 tt|ff|PAQ|PVQI|P - Q
|Vid.P|3id.P|t; =t

Note that -P £ P — ff. A term ¢ in state s is
written as [[t]](s) where [[-]] C TermsxState — Z,

and [[P]] is the set of states that satisfy P in:
[[v]l(s) = s(v)
[ren=0
[tt] & State
[Pvel£(rPlulQl
[P AQI£(PIN(QI
[P~ Q= [-PvQ]
it = 212 (s | 1])(s) = 211 (s}
[Vv.P]| 2 {s| Vn e x.s[v e b] e [P]}}
[Av.P] 2 {s|Ine x.s[v e b] € [P]}}
Partial correctness states that for any asserts

P, Q and command C, E {P} C {Q} £ Vs,s'.[s €
[[PIALC,s) Is"= s e[[Qlll-

We can define rules of Hoare logic:

H_ASGNF{P[E/X]} x:=E (P}
3 FPIC1{Q} H{QICo (R}
Q=5 e,)
H{PABIC{Q} {PA-B}C2{Q}
H-IF F{P} B?2C;:Cp {Q)
F{PAB} C (P}
H’WHLF{P; §B:C {PA-B)
FLP+s=Py L Qs = Qw
FiPw) C {Qs}
H-CNSQ F{Ps} C {Qw}

Soundness means any triple that can be derived
holds semantically:

F{P}C{Q) = F{P} C{Q}.

Completeness means any triple that holds se-
mantically can be derived:

P} C{Q} = H{P}C{Q).

