

1 Register Machines

A reg machine instr is of format:

$$L_1 : R_x^+ \rightarrow L_y$$

$$L_2 : R_x^- \rightarrow L_y, L_z$$

$$L_3 : \text{HALT}$$

On subtract, jump to first iff $R_x > 0$. A **configuration** has form (l, r_0, \dots, r_n) where l is the current label and r_i are the contents of R_i . A computation is a finite seq of configs starting with c_0 , ending in a **halting config** or erroneous config. Regmachs computation is **deterministic**, so the relation between initial and final configs is a **partial func** $(\forall \langle x, y \rangle \in f, \langle x, y' \rangle \in f \Rightarrow y = y')$.

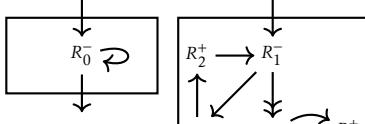
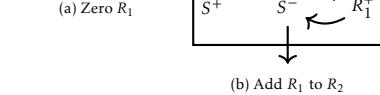
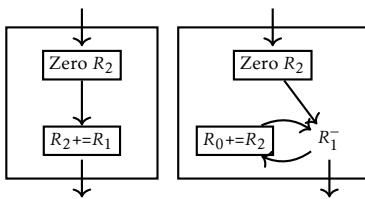
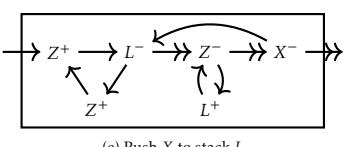
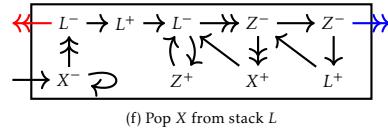
$f(x) = y$	$\exists y \in Y. \langle f(x) = y \rangle$
$f(x) \downarrow$	$\exists y \in Y. \langle f(x) = y \rangle$
$f(x) \downarrow$	$\exists y \in Y. \langle f(x) = y \rangle$
$X \rightarrow Y$	All partial funcs $(X \rightarrow Y)$
$X \rightarrow Y$	All total funcs $(X \rightarrow Y)$

A total func: $\forall x \in X. \langle f(x) \downarrow \rangle$. A partial func f is **regmach computable** if \exists regmach M with $n+1$ regs s.t. $\forall (x_1, \dots, x_n) \in \mathbb{N}^n. \forall y \in \mathbb{N}$ the computation of M starting with $R_0 = 0, R_1 = x_1, \dots, R_n = x_n$ halts with $R_0 = y$ iff $f(x_1, \dots, x_n) = y$.

Pairs can be encoded as $\langle x, y \rangle \triangleq 2^x(2y+1)$ and $\langle x, y \rangle \triangleq 2^x(2y+1) - 1$. where $\langle \cdot, \cdot \rangle$ is a **bijection** $\mathbb{N}^2 \rightarrow \mathbb{N}^+$ and $\langle \cdot, \cdot \rangle$ is a **bijection** $\mathbb{N}^2 \rightarrow \mathbb{N}$. Observe $0b(x, y) = 0b(y)1 + x$ 0s and $0b(x, y) = 0b(y)0 + x$ 1s.

Lists may be encoded with pairs with $[\cdot] \triangleq 0$ and $[\cdot : x :: l] \triangleq \langle x, [l] \rangle$, giving a bijection $l \mapsto [l]$ from \mathbb{N} to \mathbb{N} . For example, $[1, 2, 3]$ is encoded as $0b100010010$.

Programs: $[P] \triangleq [[I_0], \dots, [I_n]]$ where $[R_i^+ \rightarrow L_j^-] \triangleq \langle 2i, j \rangle$, $[R_i^- \rightarrow L_j, L_k] \triangleq \langle 2i+1, j, k \rangle$ and $[\text{HALT}] \triangleq 0$. Its easy to show any x decodes to a unique instruction, so any **program index** $x \in \mathbb{N}$ decodes to a unique program.



2 Halting Problem

A RM H decides the **Halting problem** if $\forall e, a_1, \dots, a_n \in \mathbb{N}$, starting H with $R_0 = 0, R_1 = e, R_2 = [a_1, \dots, a_n]$ always halts with $R_0 = 1$ iff the RM prog e halts when started with $R_0 = 0, R_1 = a_1, \dots, R_n = a_n$. We \exists no such H exists:

1. Assume H decides the Halting problem. Let H' replace START in H with START; $Z ::= R_1; \text{push } Z \text{ to } R_1$.
2. Let C replace HALT in H' with zero $R_1; \text{HALT}$, let c be the index of C .
3. C started with $R_1 = c$ **halts iff** H' started with $R_1 = c$ **halts** with $R_0 = 0$, **iff** H' started with $R_1 = c, R_2 = [c]$ **halts** with $R_0 = 0$, **iff** H prog(c) = C started with $R_1 = c$ **doesn't halt**.

$\forall e \in \mathbb{N}. \phi_e \in \mathbb{N} \rightarrow \mathbb{N}$ is part func computed by regmach prog e : $\forall x, y \in \mathbb{N}. \phi_e(x) = y$ holds iff the computation of $\text{prog}(e)$ with $R_0 = 0, R_1 = x$ halts with $R_0 = y$. Thus, $e \mapsto \phi_e$ defines a **surjection** from \mathbb{N} to all **computable** part funcs from $\mathbb{N} \rightarrow \mathbb{N}$ (**countable**), but $\mathbb{N} \rightarrow \mathbb{N}$ is **uncountable**, and contains **uncomputable** funcs.

The **characteristic func** of $S \subseteq \mathbb{N}$ is $\chi_S \in \mathbb{N} \rightarrow \mathbb{N}$ given by $\chi_S(x) \triangleq \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$. S is **decidable** if χ_S is **computable**. To prove S is **undecidable**, show its decidability implies the decidability of the halting problem.

3 Turing Machines

Turing Machine $M = \langle Q, \Sigma, s, \delta \rangle$, of **states** Q , possible tape symbols Σ , **initial state** $s \in Q$ and transition func $\delta \in (Q \times \Sigma) \rightarrow (Q \times \Sigma \times \{L, R\})$. A configuration $\langle q, w, u \rangle$ has **current state** $q \in Q$, left / right tape content $w, u \in \Sigma^*$. Initial config $\langle s, \epsilon, u \rangle$.

We can get the **first** and **last** symbols with:

$$\text{first}(w) = \begin{cases} (a, v) & \text{if } w = a \cdot v \\ (\sqcup, \epsilon) & \text{if } w = \epsilon \end{cases}$$

$$\text{last}(w) = \begin{cases} (a, v) & \text{if } w = v \cdot a \\ (\sqcup, \epsilon) & \text{if } w = \epsilon \end{cases}$$

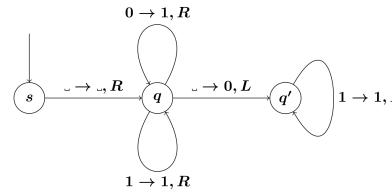
Given $M = \langle Q, \Sigma, s, \delta \rangle$, define $\langle q, w, u \rangle \rightarrow M' \langle q', w', u' \rangle$ where $\text{first}(u) = (a, u')$:

$$\begin{aligned} \delta(q, a) &= (q', a', L) \wedge \text{last}(w) = (b, w') \\ \langle q, w, u \rangle &\rightarrow M \langle q', w', ba' u' \rangle \\ \delta(q, a) &= (q', a', R) \\ \langle q, w, u \rangle &\rightarrow M \langle q', wa', u' \rangle \end{aligned}$$

- If state q , a is read from tape, and δ says move left, mach moves to q' , writes a' to tape, and moves left.
- If state q , a is read from tape, and δ says move right, mach moves to q' , writes a' to tape, and moves right.

$\langle q, w, u \rangle$ is in **normal form** if $\delta(q, a) \uparrow$ for $\text{first}(u) = (a, u')$. A **computation** of M is an infinite config seq where $c_0 = \langle s, \epsilon, u' \rangle$ and $\forall i$

$\mathbb{N}. [c_i \rightarrow_M c_{i+1}]$. It **halts iff** the seq is finite i.e. the **last config is in normal form**. e.g. graphical representation of M :



We can draw δ in a table.

We can prove any turing mach M can be mapped to a regmach:

1. Fix numerical encoding of M 's states, symbols, tape and configs.
2. Implement δ as a regmach prog.
3. Implement a regmach program to repeatedly apply \rightarrow_M .

A tape over $\Sigma = \{\sqcup, 0, 1\}$ codes a **list of numbers** $[n_1, \dots, n_k]$ as:

$$\underbrace{\dots \sqcup 0}_{\text{all } \sqcup's} \underbrace{1 \dots 1}_{n_1} \underbrace{\dots \sqcup 1 \dots 1}_{n_k} \underbrace{0 \dots}_{\text{all } \sqcup's}$$

$f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is **turing computable** iff $\exists M$ s.t. starting M on a tape coding $[x_1, \dots, x_n]$ halts iff $f(x_1, \dots, x_n) \downarrow$ and in that case the final tape holds a list whose first element is y where $f(x_1, \dots, x_n) = y$. A **part fun** is **turing computable iff it is regmach computable**.

4 Lambda Calculus

λ -calc is $\text{var} \mid \text{abstraction} \mid \text{application}$.

$$M \triangleq x \mid \lambda x. M \mid MM$$

Free vars are not **bound** in an abstraction. Terms with no free vars are **closed** or **grounded**:

$$\begin{aligned} \text{FV}(x) &= \{x\} \\ \text{FV}(\lambda x. M) &= \text{FV}(M) - \{x\} \\ \text{FV}(MN) &= \text{FV}(M) \cup \text{FV}(N) \end{aligned}$$

For **α -equivalence**, we can rename **bound** vars without changing term meaning (e.g. $\lambda x. x = \alpha \lambda y. y$). To help, we can **substitute** $M[N/x]$, replacing x in M with N . We **cannot substitute bound var**, and **must rename conflicts**.

β -reduction means applying a func to an arg (e.g. $(\lambda x. x)y \rightarrow \beta y$). More formally $(\lambda x. M)N \rightarrow \beta M[N/x]$. Rules for $\rightarrow \beta$:

$$\begin{aligned} \frac{M \rightarrow \beta M'}{\lambda x. M \rightarrow \beta \lambda x. M'} \\ \frac{M \rightarrow \beta M' \quad N \rightarrow \beta N'}{MN \rightarrow \beta M'N' \quad MN \rightarrow \beta MN'} \\ \frac{M =_\alpha M' \wedge M' \rightarrow \beta N' \wedge N' =_\alpha N}{M =_\alpha M' \wedge M' \rightarrow \beta N' \wedge N' =_\alpha N} \\ \frac{}{M \rightarrow \beta N} \end{aligned}$$

A **normal form** has no β -red. Any term that has one **will reach it**. A **multi step β red** \rightarrow^*_β enforces the reflexive transitive closure of β -red under α -conv:

$$\frac{M =_\alpha M' \quad M \rightarrow \beta M'' \wedge M'' \rightarrow^*_\beta M'}{M \rightarrow^*_\beta M'}$$

Confluence states $\forall M, M_1, M_2. [M \rightarrow^*_\beta M_1 \wedge M \rightarrow^*_\beta M_2 \Rightarrow \exists M'. [M_1 \rightarrow^*_\beta M' \wedge M_2 \rightarrow^*_\beta M']]$. This can prove that normal forms are unique.

β -equiv is the smallest equiv relation containing \rightarrow_β with symmetry: $M_1 =_\beta M_2 \Leftrightarrow \exists M'. [M_1 \rightarrow^*_\beta M' \wedge M_2 \rightarrow^*_\beta M']$. A **redex** is a reducible expr. Not all terms have a NF (e.g. $(\lambda x. xx)(\lambda x. xx)$), and some terms only have a NF under certain reduction strats. For redex $E = (\lambda x. M)N$:

- Redexes in M or N are **inside** E .
- E is **outside** any redexes in M or N .
- E is **outermost** if no redexes contain it.
- E is **innermost** if it contains no redexes.

For example, we define recursive fact $\triangleq_\beta \lambda n. \text{if } n \ 1 \ (\text{mult } n \ (\text{fact}(\text{pred } n)))$. Instead, we could use the **Y-combinator**, removing recursion. Then: $\text{fact} \triangleq_\beta \lambda (f. \lambda n. \text{if } n \ 1 \ (\text{mult } n \ (f(\text{pred } n))))$.

I	$I \triangleq \beta \lambda x. x$
K	$K \triangleq \beta \lambda xy. x$
S	$S \triangleq \beta \lambda xyz. xz(yz)$
T	$T \triangleq \beta \lambda xy. yx$
C	$C \triangleq \beta \lambda xyz. xzy$
B	$B \triangleq \beta \lambda xyz. x(yz)$
B'	$B' \triangleq \beta \lambda xyz. y(xz)$
W	$W \triangleq \beta \lambda xy. xyy$
Y	$Y \triangleq \beta \lambda f. (\lambda x. f(xx))(\lambda x. f(xx))$

For example, we define recursive fact $\triangleq_\beta \lambda n. \text{if } n \ 1 \ (\text{mult } n \ (\text{fact}(\text{pred } n)))$. Instead, we could use the **Y-combinator**, removing recursion. Then: $\text{fact} \triangleq_\beta \lambda (f. \lambda n. \text{if } n \ 1 \ (\text{mult } n \ (f(\text{pred } n))))$.

5 Operational Semantics

While lang is defined as:

$$B \in \text{Bool} \triangleq \text{true} \mid \text{false} \mid E_1 =_s E_2 \mid E_1 <_s E_2$$

$$\mid B_1 \&_s B_2 \mid \neg_s B$$

$$E \in \text{Exp} \triangleq x \mid n \mid E_1 +_s E_2 \quad \text{s.t. } x \in \text{Var}, N \in \mathbb{N}$$

$$C \in \text{Com} \triangleq x ::= E \mid \text{if } B \text{ then } C_1 \text{ else } C_2 \mid C_1; C_2 \mid \text{skip} \mid \text{while } B \text{ do } C$$

We also define a smaller *SimpExp* as $E \in \text{SimpExp} \triangleq n \mid E_1 +_s E_2$. A **big step semantic** $\llbracket \cdot \rrbracket \subseteq \text{SimpExp} \times \mathbb{N}$ where $E \llbracket n$ means E evals to n (*final answer*):

$$\begin{array}{c} \text{B-NUM} \frac{}{n \Downarrow n} \\ \text{B-ADD} \frac{E_1 \Downarrow n_1 \quad E_2 \Downarrow n_2}{E_1 +_s E_2 \Downarrow n_3} n_3 = n_1 + n_2 \end{array}$$

It is **determinant** $\forall E \in \text{SimpExp}. \forall n_1, n_2 \in \mathbb{N}. [E \llbracket n_1 \wedge E \llbracket n_2 \implies n_1 = n_2]$ and **total** $\forall E \in \text{SimpExp}. \exists n \in \mathbb{N}. E \llbracket n$.

An example **derivation tree** is:

$$\frac{B \xrightarrow{} (x+1), [x \mapsto 0] \Downarrow 1 \quad s \xrightarrow{} 1 = s' \cdots}{F \xrightarrow{} (x := x+1, [x \mapsto 0] \Downarrow [x \mapsto 1] \quad \text{loop}(x := x+1), [x \mapsto 0]) \Downarrow s''}$$

A **small step semantic** $\llbracket \cdot \rrbracket \subseteq \text{SimpExp} \times \text{SimpExp}$ where $E \rightarrow E'$ means E **reduces** to E' . To eval, use these rules in-order:

$$\text{S-LEFT} \frac{E_1 \rightarrow E'_1}{E_1 +_s E_2 \rightarrow E'_1 +_s E_2}$$

$$\text{S-RIGHT} \frac{E_2 \rightarrow E'_2}{n +_s E_2 \rightarrow n +_s E'_2}$$

$$\text{S-ADD} \frac{}{n_1 +_s n_2 \rightarrow n_3} n_3 = n_1 + n_2$$

$$\begin{array}{c} \text{EXP.L} \frac{\langle E_1, s \rangle \rightarrow_e \langle E'_1, s' \rangle}{\langle E_1 +_s E_2, s \rangle \rightarrow_e \langle E'_1 +_s E_2, s' \rangle} \\ \text{EXP.R} \frac{\langle E, s \rangle \rightarrow_e \langle E', s' \rangle}{\langle n +_s E, s \rangle \rightarrow_e \langle n +_s E', s' \rangle} \\ \text{EXP.VAR} \frac{\langle x, s \rangle \rightarrow_e \langle n, s \rangle}{n = s(x)} \\ \text{EXP.ADD} \frac{}{\langle n_1 +_s n_2, s \rangle \rightarrow_e \langle n_3, s \rangle} n_3 = n_1 + n_2 \\ \text{ASS.EXP} \frac{\langle E, s \rangle \rightarrow_e \langle E', s' \rangle}{\langle x ::= E, s \rangle \rightarrow_c \langle x ::= E', s' \rangle} \\ \text{ASS.NUM} \frac{\langle x ::= n, s \rangle \rightarrow_c \langle \emptyset, s[x \mapsto n] \rangle}{\langle C_1, s \rangle \rightarrow_c \langle C'_1, s' \rangle} \\ \text{SEQ.L} \frac{}{\langle C_1; C_2, s \rangle \rightarrow_c \langle C'_1; C_2, s' \rangle} \\ \text{CND.T} \frac{\langle \text{tt} ? \quad C_1 : C_2, s \rangle \rightarrow_c \langle C_1, s \rangle}{\langle \text{ff} ? \quad C_1 : C_2, s \rangle \rightarrow_c \langle C_2, s \rangle} \\ \text{CND.F} \frac{\langle \text{ff} ? \quad C_1 : C_2, s \rangle \rightarrow_c \langle C_2, s \rangle}{\langle \text{tt} ? \quad C_1 : C_2, s \rangle \rightarrow_c \langle B', s' \rangle} \\ \text{CND.B} \frac{\langle B, s \rangle \rightarrow_b \langle B', s' \rangle}{\langle B ? \quad C_1 : C_2, s \rangle \rightarrow_c \langle B' ? \quad C_1 : C_2, s' \rangle} \\ \text{WHILE} \frac{\langle \uparrow B : C, s \rangle \rightarrow_c \langle B ? \quad (C; \uparrow B : C) : \emptyset, s \rangle}{\langle \uparrow B : C, s \rangle \rightarrow_c \langle B ? \quad (C; \uparrow B : C) : \emptyset, s \rangle} \end{array}$$

Answer configs are of form $\langle n, s \rangle$, $\langle \text{bv}, s \rangle$, or $\langle \emptyset, s \rangle$. **Stuck configs** are non-answer NF configs. \rightarrow_c is **not normalizing**, e.g. $\uparrow \text{tt} : \emptyset$.

An op is **strict** if it needs to eval an arg. E.g. + is **strict**, and $\&_s$ is **left-strict**. $\&_s$:

$$\begin{array}{c} B_1 \rightarrow B'_1 \\ B_1 \&_s B_2 \rightarrow B'_1 \&_s B_2 \\ \hline \text{ff} \&_s B_2 \rightarrow \text{ff} \quad \text{tt} \&_s B_2 \rightarrow B_2 \end{array}$$

6 Inductive Proofs

An **inductive principle** on *SimpExpr* is:

$$\begin{array}{l} \forall n \in \mathbb{N}. P(n) \\ \wedge \forall E_1, E_2. [P(E_1) \wedge P(E_2) \implies P(E_1 +_s E_2)] \\ \wedge \forall E_1, E_2. [P(E_1) \wedge P(E_2) \implies P(E_1 \times_s E_2)] \\ \implies \forall E. P(E) \end{array}$$

A **reflexive transitive closure** $E \rightarrow^* E'$ holds iff $E = E'$ or \exists a finite seq. $E \rightarrow \dots \rightarrow E'$. E is in **normal form** iff $\nexists E' \mid E \rightarrow E'$. \rightarrow is: **Deterministic** $\forall E, E_1, E_2. [E \rightarrow E_1 \wedge E \rightarrow E_2 \implies E_1 = E_2]$. **Confluent** $\forall E, E_1, E_2. [E \rightarrow^* E_1 \wedge E \rightarrow^* E_2 \implies \exists E' \mid E \rightarrow^* E' \wedge E_2 \rightarrow^* E']$. **Weakly Normalized** $\forall E. \exists E' \mid E \rightarrow^* E' \wedge E' \text{ is normal}$. **Strongly Normalized** $\forall E. \nexists \text{inf seq. } E_1, \dots, E_n \text{ s.t. } \forall i \in \mathbb{N}. E_i \rightarrow E_{i+1}$. \rightarrow **Has Unique NF** $\forall E, E_1, E_2. [E \rightarrow^* E_1 \wedge E \rightarrow^* E_2 \wedge E_1, E_2 \text{ in NF} \implies E_1 = E_2]$. We can relate $\forall E \in \text{SimpExp}. \forall n \in \mathbb{N}. [E \llbracket n \Downarrow E \rightarrow^* n]$.

State $\triangleq \text{Var} \rightarrow \mathbb{N}$ (e.g. $s_1 = (x \mapsto 1)$). A **configuration** is $\langle E, s \rangle$. A **state update**:

$$s[v \mapsto n](u) = \begin{cases} n & \text{if } u = v \\ s(u) & \text{otherwise} \end{cases}$$

$\rightarrow_e, \rightarrow_b, \rightarrow_c$ are **deterministic** & **confluent**:

$$\begin{array}{c} \text{Base Case} \text{ for } E = n \text{ and } S(E) = n: \\ \text{To Show: } \forall n \in \mathbb{Z}. \forall s \in \text{State}. \forall m \in \mathbb{Z}. [\dots]. \text{ONE LESS RESTRICTION THAN WHAT WE ARE PROVING} \\ (1) \dots \\ \vdots \end{array}$$

Inductive Case for $E = E_1 + E_2$ and $S(E_1 + E_2) = S(E_1) + S(E_2)$:

Take E_1, E_2 arbitrary.

Inductive Hypothesis: $\forall s \in \text{State}. \forall m \in \mathbb{Z}. [\dots]. \text{ONE LESS RESTRICTION THAN WHAT WE ARE PROVING}$

To Show: Same as in base case.

(9) \dots

7 Denotational Semantics

An **expr ctx** $C^e \triangleq \cdot | E +_s C^e | C^e +_s E | \dots$ where \cdot is the **ctx hole** (e.g. $C^e[\cdot] = \cdot +_s 2$). **Ctx application** is done by filling the hole $C^e[E]$, defined recursively as:

$$\begin{array}{c} (\cdot)[E] \triangleq E \\ (C^e +_s E')[E] \triangleq C^e[E] +_s E' \\ (E' +_s C^e)[E] \triangleq E' +_s C^e[E] \end{array}$$

This allows to combine EXP.L and EXP.R:

$$\text{EXP.E} \frac{\langle E, s \rangle \rightarrow_e \langle E', s' \rangle}{\langle C^e[E], s \rangle \rightarrow_e \langle C^e[E'], s' \rangle}$$

Weak contextual equivalence means $E_1 \sim E_2 \triangleq \forall n \in \mathbb{N}. [E_1 \rightarrow^* n \Leftrightarrow E_2 \rightarrow^* n]$, **contextual equivalence** means $E_1 \approx E_2 \triangleq \forall C^e[\cdot]. [C^e[E_1] \sim C^e[E_2]]$. **Denotational semantics** describe the **meaning** of a prog. **Interpretation** $\llbracket \cdot \rrbracket \subseteq \text{SimpExp} \times \mathbb{N}$ over a **semantic domain** \mathbb{N} :

$$\begin{array}{c} [[n]] \triangleq n \\ [[E_1 +_s E_2]] \triangleq [[E_1]] + [[E_2]] \end{array}$$

We can now prove properties on \rightarrow_s . Also, we can define a **func between meanings**: $\forall C^e. \exists f \subseteq \mathbb{N}^2. [C^e[E]] = f(\llbracket E \rrbracket)]$. Consequently, $\forall C^e. \forall E_1, E_2. [[E_1]] = [[E_2]] \implies [[C^e[E_1]]] = [[C^e[E_2]]]$, and hence $\llbracket E \rrbracket = n \Leftrightarrow E \llbracket n \rrbracket$. Also, $E_1 \approx E_2 \Leftrightarrow [[E_1]] = [[E_2]]$.

Let Σ be the set of all states, and $\Sigma \subseteq \Sigma \cup \{\perp\}$. **The semantic domain of commands** is given by the set of **state transformers** $\mathcal{S}_c \triangleq [\Sigma \rightarrow \Sigma]$, a set of total functions that take an initial state, and return either a final state of \perp . Similarly, $\mathcal{S}_e \triangleq [\Sigma \rightarrow \mathbb{N}_\perp]$ and $\mathcal{S}_b \triangleq [\Sigma \rightarrow \mathbb{B}_\perp]$.

$\llbracket \cdot \rrbracket^e : \text{Exp} \rightarrow \mathcal{S}_e$ is defined as:

$$\begin{array}{c} [[n]]^e(s) \triangleq n \\ [[x]]^e(s) \triangleq \text{selup}(x)(s) \\ [[E_1 +_s E_2]]^e(s) \triangleq \text{seplus}([[E_1]]^e, [[E_2]]^e)(s) \end{array}$$

$$\text{Lookup} \quad \text{selup}(x)(s) = \begin{cases} s(x) & s(x) \Downarrow \\ \perp & \text{o.w.} \end{cases}$$

$$\text{Addition} \quad \text{seplus}(e_1, e_2)(s) = \begin{cases} e_1(s) + e_2(s) & e_1(s) \Downarrow \wedge e_2(s) \Downarrow \\ \perp & \text{o.w.} \end{cases}$$

$\llbracket \cdot \rrbracket^c : \text{Com} \rightarrow \mathcal{S}_c$ is defined as:

$$\begin{array}{c} [[x ::= E]]^c(s) \triangleq \text{sc}_{\text{asg}}(\llbracket E \rrbracket^e, x)(s) \\ [[\emptyset]]^c(s) \triangleq s \\ [[C_1; C_2]]^c(s) \triangleq \text{seq}(\llbracket C_1 \rrbracket^c, \llbracket C_2 \rrbracket^c)(s) \\ [[B ? C_1 : C_2]]^c(s) \triangleq \text{sc}_{\text{cnd}}(\llbracket B \rrbracket^b, \llbracket C_1 \rrbracket^c, \llbracket C_2 \rrbracket^c)(s) \\ [[\uparrow B : C]]^c(s) \triangleq (\llbracket B \rrbracket^b, \llbracket C \rrbracket^c)(s) \end{array}$$

Assignment $\text{sc}_{\text{asg}}(e, x)(s) =$

$$\begin{cases} s[x \mapsto e](s) & e(s) \Downarrow \\ \perp & \text{o.w.} \end{cases}$$

Sequencing $\text{sc}_{\text{seq}}(c_1, c_2)(s) =$

$$\begin{cases} c_2(c_1(s)) & c_1(s) \Downarrow \\ \perp & \text{o.w.} \end{cases}$$

Conditional $\text{sc}_{\text{cnd}}(b, c_1, c_2)(s) =$

$$\begin{cases} c_1(s) & b(s) \Downarrow \wedge b(s) = \text{tt} \\ c_2(s) & b(s) \Downarrow \wedge b(s) = \text{ff} \\ \perp & \text{o.w.} \end{cases}$$

$st_{whl}(b, c) = st_{cnd}(b, st_{seq}(c, st_{whl}(b, c)), st_{skp})$, but this is not a definition. Instead:

Assume $F : (A \rightarrow \perp) \rightarrow (A \rightarrow \perp)$:

1. Define $\text{seq} \forall i \in \mathbb{N}. f_i : A \rightarrow A \perp$ where $f_0 \triangleq \perp$ and $f_{i+1} \triangleq F(f_i)$.
2. Define $\text{func } f_\infty : A \rightarrow A \perp$ st: $f_\infty(a) \triangleq \begin{cases} a' & \exists i. f_i(a) = a' \neq \perp \\ \perp & \text{o.w.} \end{cases}$
3. $\text{Ass } \forall i. a. f_i(a) \Downarrow \implies f_{i+1}(a) = f_i(a)$.

By **fixpoint theorem**, f_∞ is a fixpoint of F . For any other fixpoint g of F , $\forall a. [f_\infty(a) \Downarrow \implies g(a) = g(a)]$.

$W(c_w) \triangleq st_{cnd}(b, st_{seq}(c, c_w), st_{skp})$, so $st_{whl}(b, c)$ is a **fixpoint** of W .

1. Define $\forall i. w_i : \mathcal{S}_c$ where $w_0 \triangleq \perp$ and $w_{i+1} \triangleq W(w_i)$.
2. Define $w_\infty : \mathcal{S}_c$ where:

$$w_\infty(s) \triangleq \begin{cases} s' & \exists i. w_i(s) = s' \neq \perp \\ \perp & \text{o.w.} \end{cases}$$

3. $\forall s \in \Sigma \text{ ass } w_i(s) \Downarrow \implies w_{i+1}(s) = w_i(s)$.
4. By **FT**, $sc_{whl}(b, c) = w_\infty$.

8 Hoare Logic

A formalism relating the initial and terminating state of a program. Written with **command** C , **precond** P and **postcond** Q . It is a deductive proof system of **triples** $\{P\} C \{Q\}$. **Assertion lang** is a lang for defining state predicates and their semantics. It is an instance of first order logic with equality, with values as integers and assertions as properties of while statements:

$$\begin{array}{c} v \in \text{Vars} \triangleq \text{id} \mid \text{id}_{\log} \\ t \in \text{Terms} \triangleq v \\ P, Q \in \text{Ass} \triangleq \text{tt} \mid \text{ff} \mid P \wedge Q \mid P \vee Q \mid P \rightarrow Q \\ \mid \forall \text{id}. P \mid \exists \text{id}. P \mid t_1 = t_2 \end{array}$$

Note that $\neg P \triangleq P \rightarrow \text{ff}$. A term t in state s is written as $\llbracket t \rrbracket(s)$ where $\llbracket \cdot \rrbracket \subseteq \text{Terms} \times \text{State} \rightarrow \mathbb{Z}$,

and $\llbracket P \rrbracket$ is the set of states that satisfy P in:

$$\begin{array}{c} \llbracket v \rrbracket(s) = s(v) \\ \llbracket \text{ff} \rrbracket \triangleq \emptyset \\ \llbracket \text{tt} \rrbracket \triangleq \text{State} \\ \llbracket P \vee Q \rrbracket \triangleq \llbracket P \rrbracket \cup \llbracket Q \rrbracket \\ \llbracket P \wedge Q \rrbracket \triangleq \llbracket P \rrbracket \cap \llbracket Q \rrbracket \\ \llbracket P \rightarrow Q \rrbracket \triangleq \llbracket \neg P \vee Q \rrbracket \\ \llbracket t_1 = t_2 \rrbracket \triangleq \{s \mid \llbracket t_1 \rrbracket(s) = \llbracket t_2 \rrbracket(s)\} \\ \llbracket \forall v. P \rrbracket \triangleq \{s \mid \forall n \in \mathbb{N}. \llbracket v \mapsto b \rrbracket \in \llbracket P \rrbracket\} \\ \llbracket \exists v. P \rrbracket \triangleq \{s \mid \exists n \in \mathbb{N}. \llbracket v \mapsto b \rrbracket \in \llbracket P \rrbracket\} \end{array}$$

Partial correctness states that for any asserts P, Q and command C , $\models \{P\} C \{Q\} \triangleq \forall s, s'. [s \in \llbracket P \rrbracket \wedge \langle C, s \rangle \Downarrow s' \rightarrow s \in \llbracket Q \rrbracket]$. We can define rules of Hoare logic:

$$\begin{array}{c} \text{H-ASGN} \frac{}{\models \{P[E/X]\} x ::= E \{P\}} \\ \text{H-SEQ} \frac{\models \{P\} C_1 \{Q\} \quad \models \{Q\} C_2 \{R\}}{\models \{P\} C_1; C_2 \{R\}} \\ \text{H-IF} \frac{\models \{P \wedge B\} C_1 \{Q\} \quad \models \{P \wedge \neg B\} C_2 \{Q\}}{\models \{P\} B ? C_1 : C_2 \{Q\}} \\ \text{H-WHIL} \frac{\models \{P \wedge B\} C \{P\}}{\models \{P\} \uparrow B : C \{P \wedge B\}} \\ \quad \quad \quad \models_L P + s \rightarrow P_W \quad \models_L Q_S \rightarrow Q_W \\ \quad \quad \quad \models \{P_W\} C \{Q_S\} \\ \text{H-CNSQ} \frac{}{\models \{P_S\} C \{Q_W\}} \end{array}$$

Soundness means any triple that can be derived holds semantically:

$$\models \{P\} C \{Q\} \implies \models \{P\} C \{Q\}$$

Completeness means any triple that holds semantically can be derived:

$$\models \{P\} C \{Q\} \implies \models \{P\} C \{Q\}$$