
1 Register Machines
A reg machine instr is of format:

L1 :R+x → Ly

L2 :R−x → Ly ,Lz

L3 :HALT

On subtract, jump to first iff Rx > 0. A config-
uration has form (l, r0 , · · · rn) where l is the cur-
rent label and ri is the contents of Ri . A compu-
tation is a finite seq of configs starting with c0,
ending in a halting config or erroneous config.
Regmachs computation is deterministic, so the
relation between initial and final configs is a
partial func (∀〈x,y〉 ∈ f .

[
〈x,y′〉 ∈ f =⇒ y = y′

]
).

f (x) = y 〈x,y〉 ∈ f
f (x) ↓ ∃y ∈ Y .[f (x) = y]
f (x) ↓ ∄y ∈ Y .[f (x) = y]
X ⇀ Y All partial funcs (X to Y)
X→ Y All total funcs (X to Y)

A total func: ∀x ∈ X. [f (x) ↓]. A partial func f is
regmach computable if ∃ regmachM with n+1
regs s.t. ∀(x1 , · · · ,xn) ∈ Nn .∀y ∈ N the computa-
tion of M starting with R0 = 0,R1 = x1 , · · · ,Rn =
xn halts with R0 = y iff f (x1 , · · · ,xn) = y.
Pairs can be encoded as 〈〈x,y〉〉≜ 2x(2y + 1) and
〈x,y〉 ≜ 2x(2y + 1) − 1. where 〈〈·, ·〉〉 is a bijection
N2→ N+ and 〈·, ·〉 is a bijection N2→ N. Observe
0b〈〈x,y〉〉 = 0by1+ x 0s and 0b〈x,y〉 = 0by0+ x 1s.
Lists may be encoded with pairs with d[]e ≜ 0
and dx :: le ≜ 〈〈x,dle〉〉, giving a bijection l 7→ dle
from N to N. For example, [1,2,3] is encoded as
0b100010010.
Programs: dPe≜ d[dI0e, · · · ,dIne]e where dR+i →
Lj e≜ 〈〈2i, j〉〉, dR−i → Lj ,Lk e≜ 〈〈2i +1,〈j,k〉〉〉e and
dHALTe≜ 0. Its easy to show any x decodes to a
unique instruction, so any program index x ∈ N
decodes to a unique program.

R−0

(a) Zero R1

R−1R+2

S+ S− R+1

(b) Add R1 to R2

Zero R2

R2+=R1

(c) Copy R1 to R2

Zero R2

R0+=R2 R−1

(d) Mult R1 by R2 to R0

Z+

Z+

L− Z−

L+

X−

(e) Push X to stack L

X−

L− L+ L−

Z+

Z−

L+

Z−

X+

(f) Pop X from stack L

2 Halting Problem
A RM H decides the Halting problem if
∀e,a1 , · · ·an ∈ N, starting H with R0 = 0,R1 =
e,R2 = d[a1 , · · · , an]e always halts with R0 = 1
iff the RM prog e halts when started with R0 =
0,R1 = a1 , · · ·Rn = an . We z no such H exists:

1. Assume H decides the Halting problem. Let
H ′ replace START in H with START;Z ::=
R1;push Z to R1.

2. Let C replace HALT in H ′ with
zero R1;HALT, let c be the index of C.

3. C started with R1 = c halts iff H ′ started
with R1 = c halts with R0 = 0, iff H started
with R1 = c,R2 =e [c]e halts with R0 = 0, iff
prog (c) = C started with R1 = c doesn’t halt.�

∀e ∈ N.ϕe ∈ N → N is part func computed by
regmach prog e: ∀x,y ∈ N.ϕe(x) = y holds iff the
computation of prog (e) with R0 = 0,R1 = x halts
with R0 = y. Thus, e 7→ ϕe defines a surjec-
tion from N to all computable part funcs from
N → N (countable), but N → N is uncountable,
and contains uncomputable funcs.
The characteristic func of S ⊆ N is χS ∈ N→ N

given by χS (x)≜
1 if x ∈ S
0 otherwise

. S is decidable

if χS is computable. To prove S is undecidable,
show its decidability implies the decidability of
the halting problem.
3 Turing Machines
Turing Machine M = 〈Q,Σ, s,δ〉, of states Q,
possible tape symbols Σ, initial state s ∈Q and
transition func δ ∈ (Q ×Σ)⇀ (Q ×Σ× {L,R}). A
configuration 〈q,w,u〉 has current state q ∈ Q,
left / right tape content w,u ∈ Σ∗. Initial config
〈s,ϵ,u〉.
We can get the first and last symbols with:

first(w) =

(a,v) if w = a · v
(t,ϵ) if w = ϵ

last(w) =

(a,v) if w = v · a
(t,ϵ) if w = ϵ

Given M = 〈Q,Σ, s,δ〉, define 〈q,w,u〉 →M
〈q′ ,w′ ,u′〉 where first(u) = (a,u′):

δ(q,a) = (q′ , a′ ,L)∧ last(w) = (b,w′)
〈q,w,u〉 →M 〈q′ ,w′ , ba′u′〉

δ(q,a) = (q′ , a′ ,R)
〈q,w,u〉 →M 〈q′ ,wa′ ,u′〉

• If state q, a is read from tape, and δ says move
left, mach moves to q′ , writes a′ to tape, and
moves left.

• If state q, a is read from tape, and δ says move
right, mach moves to q′ , writes a′ to tape, and
moves right.

〈q,w,u〉 is in normal form if δ(q,a) ↑ for
first(u) = (a,u′). A computation of M is an
infinite config seq where c0 = 〈s,ϵ,u ′〉 and ∀i ∈

N. [ci →M ci+1]. It halts iff the seq is finite i.e.
the last config is in normal form. e.g. graphical
representation of M:

We can draw δ in a table.

We can prove any turing mach M can be
mapped to a regmach:

1. Fix numerical encoding of M’s states, sym-
bols, tape and configs.

2. Implement δ as a regmach prog.
3. Implement a regmach program to repeat-

edly apply→M .

A tape over Σ = {t,0,1} codes a list of numbers
[n1 , · · · ,nk] as:

· · ·tt︸︷︷︸
all t’s

0 1 · · ·1︸︷︷︸
n1

t · · · t 1 · · ·1︸︷︷︸
nk

0 tt· · ·︸︷︷︸
all t’s

f ∈ Nn ⇀ N is turing computable iff ∃M s.t.
starting M on a tape coding [x1 , · · ·xn] halts iff
f (x1 , · · ·xn) ↓ and in that case the final tape
holds a list whose first element is y where
f (x1 , · · ·xn) = y. A part fun is turing computable
iff it is regmach computable.
4 Lambda Calculus
λ-calc is var | abstraction | application.

M ≜ x | λx.M |MM

Free vars are not bound in an abstraction. Terms
with no free vars are closed or grounded:

FV(x) = {x}
FV(λx.M) = FV(M)− {x}
FV(MN) = FV(M)∪ FV(N)

For α-equivalence, we can rename bound vars
without changing term meaning (e.g. λx.x =α
λy.y). To help, we can substituteM[N/x], replac-
ing x in M with N . We cannot substitute bound
var, and must rename conflicts.
β-reduction means applying a func to an arg
(e.g. (λx.x)y→β y). More formally (λx.M)N →β
M[N/x]. Rules for→β :

M→β M ′

λx.M →β λx.M ′

M→β M ′

MN →β M ′N

N →β N ′

MN →β MN ′

M =α M ′ ∧M ′ →β N ′ ∧N ′ =α N

M→β N

A normal form has no β-red. Any term that has
one will reach it. A multi step β red →∗β en-

forces the reflexive transitive closure of β-red
under α-conv:

M =α M ′

M→∗β M ′
M→β M ′′ ∧M ′′ →∗β M ′

M→∗β M ′

Confluence states ∀M,M1 ,M2 .[M →∗β M1 ∧
M →∗β M2 =⇒ ∃M ′ .[M1 →∗β M ′ ∧M2 →∗β M ′]].

This can prove that normal forms are unique.
β-equiv is the smallest equiv relation con-
taining →β with symmetry: M1 =β M2 ⇔
∃M ′ .[M1→∗β M ′ ∧M2→∗β M ′].

A redex is a reductible expr. Not all terms have
a NF (e.g.(λx.xx)(λx.xx)), and some terms only
have a NF under certain reduction strats. For
redex E = (λx.M)N :

• Redexes in M or N are inside E.
• E is outside any redexes in M or N .
• E is outermost if no redexes contain it.
• E is innermost if it contains no redexes.

There are many reduction strategies:

1. Normal Order reduces leftmost, outermost
redex first. Always terminates at a NF, but
can ppform computations on unevaluated
func bodies.

2. Call by Name reduces leftmost, outermost
redex first, ignoring inside λ abstractions.
Does not always reduce to NF, evals args
when needed.

3. Call by Value reduces leftmost, innermost
redex first, ignoring inside λ abstractions.
Does not always reduce to NF, evals args be-
fore passing to func body.

A part func f : Nn ⇀ N is λ-definable iff ∃
closed M s.t.f (x1 , · · ·xn) = y ⇔ Mx1 , · · ·xn =β y
and f (x1 , · · ·xn) ↑⇔ Mx1 , · · ·xn has no NF. The
Church-Turing thesis states f is λ-computable
iff it is λ-definable, and hence turingmach com-
putable and regmach computable.

Church numerals are defined as n ≜
λf .λx.(f (n· · ·(f x) n· · ·)). To encode m + n, we
place the body of n into that of m: mf (nf x).
Hence:

• plus ≜β λm.λn.λf .λx.mf (nf x) Adds Church
numerals m and n

• mult ≜β λm.λn.λf .m(nf) Multiplies Church
numerals m and n

• exp ≜β λm.λn.nm Exponentiates Church nu-
merals as mn

• succ ≜β λn.λf .λx. f (nf x) Returns the succes-
sor of n (i.e., n+1)

• pred≜β λn.λf .λx.n(λg.λh.h(gf))(λu.x)(λu.u)
Computes the predecessor of n, clamping at 0

• sub≜β λm.λn.npredm max(0,n−m)

• ifz ≜β λm.λx1 .λx2 .m(λz.x2)x1 x1 if m = 0,
otherwise x2

• double≜β λn.λf .λx.n(f ◦ f)x

• div≜β Y (λr.λm.λn.
ifz(submn)zero (λ_.succ(r(submn)n))) Re-
turns bm/nc

• mod≜β Y (λr.λm.λn.
ifz(submn)m (λ_. r(submn)n)) Remainder of
m divided by n

• pair≜β λv1v2 .(λp.pv1v2)

• fst≜β λp.p(λw1w2 .w1)

• snd≜β λp.p(λw1w2 .w2)

Common combinators (no free vars) are:
I I≜ βλx.x

K K≜ βλxy.x

S S≜ βλxyz.xz(yz)
T T≜ βλxy.yx

C C≜ βλxyz.xzy

B B≜ βλxyz.x(yz)
B’ B’≜ βλxyz.y(xz)
W W≜ βλxy.xyy

Y Y≜ βλf .(λx.f (xx))(λx.f (xx))

For example, we define recursive fact ≜β
λn.ifz n 1 (mult n (fact(pred n))). In-
stead, we could use the Y-combinator,
removing recursion. Then: fact ≜β
Y(λf .λn.ifz n 1 (mult n (f (pred n)))).

1

5 Operational Semantics

While lang is defined as:

B ∈ Bool≜true |false |E1 =s E2 |E1 <s E2

|B1&sB2 |¬sB

E ∈ Exp≜x |n |E1 +s E2 s.t. x ∈ Var,N ∈ N

C ∈ Com≜x ::= E |if B then C1 else C2

|C1; C2 |skip |while B do C

We also define a smaller SimpExp as E ∈
SimpExp ≜ n |E1 +s E2. A big step semantic
⇓⊆ SimpExp × N where E ⇓ n means E evals to
n (final answer):

B-NUM
n ⇓ n

B-ADD
E1 ⇓ n1 E2 ⇓ n2
E1 +s E2 ⇓ n3

n3 = n1 +n2

It is determinant ∀E ∈ SimpExp.∀n1 ,n2 ∈
N. [E ⇓ n1 ∧E ⇓ n2 =⇒ n1 = n2] and total ∀E ∈
SimpExp.∃n ∈ N.E ⇓ n.

An example derivation tree is:

F
B
〈x +1〉, [x 7→ 0] ⇓ 1 s [x 7→ 1] = s′

〈x := x +1, [x 7→ 0] ⇓ [x 7→ 1]
F
· · ·
· · ·

〈loop(x := x +1), [x 7→ 0]〉 ⇓ s′′

A small step semantic →⊆ SimpExp × SimpExp
where E → E′ means E reduces to E′ . To eval,
use these rules in-order:

S-LEFT
E1→ E′1

E1 +s E2→ E′1 +s E2

S-RIGHT
E2→ E′2

n+s E2→ n+s E′2
S-ADD

n1 +s n2→ n3
n3 = n1 +n2

A reflexive transitive closure E →∗ E′ holds iff
E = E′ or ∃ a finite seq. E → ·· · → E′ . E is in
normal form iff ∄E′ .E → E′ . → is: Determin-
istic ∀E,E1 ,E2 .[E → E1 ∧ E → E2 =⇒ E1 = E2].
Confluent ∀E,E1 ,E2 .[E →∗ E1 ∧ E →∗ E2 =⇒
∃E′ .[E1→∗ E′∧E2→∗ E′]]. WeaklyNormalized
∀E.∃E′ .[E →∗ E′ ∧ E′ is normal]. Strongly Nor-
malized ∀E.[∄ inf seq. E1 , · · · ,En s.t.∀i ∈ N.Ei →
Ei+1]. Has Unique NF ∀E,E1 ,E2 .[E →∗ E1 ∧
E →∗ E2 ∧ E1 ,E2 in NF =⇒ E1 = E2]. We can
relate ∀E ∈ SimpExp.∀n ∈ N [E ⇓ n⇔ E→∗ n].

State ≜ Var⇀ N (e.g. s1 = (x 7→ 1)). A configu-
ration is 〈E,s〉. A state update:

s[v 7→ n](u) =

n if u = v

s(u) otherwise

→e ,→b ,→c are deterministic & confluent:

EXP.L
〈E1 , s〉 →e 〈E′1 , s

′〉
〈E1 +s E2 , s〉 →e 〈E′1 +s E2 , s

′〉

EXP.R
〈E,s〉 →e 〈E′ , s′〉

〈n+s E,s〉 →e 〈n+s E′ , s′〉
EXP.VAR

〈x,s〉 →e 〈n,s〉
n = s(x)

EXP.ADD
〈n1 +s n2 , s〉 →e 〈n3 , s〉

n3 = n1 +n2

ASS.EXP
〈E,s〉 →e 〈E′ , s′〉

〈x ::= E,s〉 →c 〈x ::= E′ , s′〉
ASS.NUM

〈x ::= n,s〉 →c 〈∅, s[x 7→ n]〉

SEQ.L
〈C1 , s〉 →c 〈C′1 , s

′〉
〈C1 ; C2 , s〉 →c 〈C′1 ; C2 , s′〉

SEQ.SKP
〈∅ ; C,s〉 →c 〈C,s〉

CND.T
〈tt ? C1 : C2 , s〉 →c 〈C1 , s〉

CND.F
〈ff ? C1 : C2 , s〉 →c 〈C2 , s〉

CND.B
〈B,s〉 →b 〈B′ , s′〉

〈B ? C1 : C2 , s〉 →c 〈B′ ? C1 : C2 , s′〉
WHILE

〈m B : C,s〉 →c 〈B ? (C;m B : C) :∅, s〉

Answer configs are of form 〈n,s〉, 〈bv, s〉, or
〈∅, s〉. Stuck configs are non-answer NF con-
figs. →c is not normalizing, e.g. m tt :∅.

An op is strict if it needs to eval an arg. E.g. +s
is strict, and &s is left-strict. &s :

B1→ B′1
B1&sB2→ B′1&sB2

ff&sB2→ ff tt&sB2→ B2

6 Inductive Proofs

An inductive principle on SimpExpr is:

∀n ∈ N.P(n)
∧∀E1 ,E2 . [P(E1)∧P(E2) =⇒ P(E1 +s E2)]

∧∀E1 ,E2 . [P(E1)∧P(E2) =⇒ P(E1 ×s E2)]
=⇒ ∀E.P(E)

1. Base Case state to show and prove for
each case. Ass arb LHS, and prove RHS.

2. Inductive Case state to show for i + 1th.
Then state inductive hypothesis assum-
ing ith, or j ≤ i + 1th. Prove each case.
The inductive hypothesis are constructed
from the top of a rule.

Base Case for E = n and S(E) = n:
To Show ∀n ∈ Z.∀s ∈ State.∀m ∈ Z. [· · ·]. ONE
LESS RESRICTION THAN WHAT WE ARE
PROVING
(1) · · ·

.

.

.

Inductive Case for E = E1 + E2 and S(E1 +
E2) = S(E1) +S(E2):
Take E1 ,E2 arbitrary.
Inductive Hypothesis: ∀s ∈ State.∀m ∈
Z. [· · ·]. ONE LESS RESRICTION THAN
WHATWE ARE PROVING
To Show: Same as in base case.
(9) · · ·

.

.

.

7 Denotational Semantics
An expr ctx Ce ≜ · |E +s Ce |Ce +s E | · · · where ·
is the ctx hole (e.g. Ce [·] = · +s 2). Ctx appli-
cation is done by filling the hole Ce [E], defined
recursively as:

(·)[E]≜ E

(Ce +s E
′)[E]≜ Ce [E] +s E

′

(E′ +s C
e)[E]≜ E′ +s C

e [E]

This allows to combine EXP.L and EXP.R:

EXP.E
〈E,s〉 →e 〈E′ , s′〉

〈Ce [E], s〉 →e 〈Ce [E′], s′〉

Weak contextual equivalence means
E1 ∼ E2 ≜ ∀n ∈ N. [E1→∗ n⇔ E2→∗ n],
contextual equivalence means E1 � E2 ≜
∀Ce [·]. [Ce [E1] ∼ Ce [E2]].
Denotational semantics describe the meaning
of a prog. Interpretation [[_]] ⊆ SimpExp × N
over a semantic domain N:

[[n]]≜ n

[[E1 +s E2]]≜ [[E1]] + [[E2]]

We can now prove properties on +s . Also,
we can define a func between meanings:
∀Ce .∃f ⊆ N2 . [[[Ce [E]]] = f ([[E]])]. Consequently,
∀Ce .∀E1 ,E2 .[[[E1]] = [[E2]] =⇒ [[Ce [E1]]] =
[[Ce [E2]]]], and hence [[E]] = n ⇔ E ⇓ n. Also,
E1 � E2⇔ [[E1]] = [[E2]].
Let Σ be the set of all states, and Σ⊥Σ ∪ {⊥}.
Thesemantic domain of commands is given by
the set of state transformers Sc ≜ [Σ→ Σ⊥], a
set of total functions that take an initial state,
and return either a final state of ⊥. Similarly,
Se ≜ [Σ→ N⊥] and Sb ≜ [Σ→ B⊥].

[[_]]e : Exp→Se is defined as:

[[n]]e (s)≜ n

[[x]]e (s)≜ selup (x)(s)

[[E1 +s E2]]
e (s)≜ seplus ([[E1]]

e , [[E2]]
e)(s)

Lookup selup (x)(s) =

s(x) s(x) ↓
⊥ o.w.

Addition seplus (e1 , e2)(s) =e1(s) + e2(s) e1(s) ↓ ∧e2(s) ↓
⊥ o.w.

[[_]]c : Com→Sc is defined as:

[[x ::= E]]c (s)≜ scasg ([[E]]
e ,x)(s)

[[∅]]c (s)≜ s

[[C1;C2]]
c (s)≜ stseq ([[C1]]

c , [[C2]]
c)(s)

[[B?C1 : C2]]
c (s)]≜ stcnd ([[B]]

b ,

[[C1]]
c , [[C2]]

c)(s)

[[m B : C]]c (s)≜ ([[B]]b , [[C]]c)(s)

Assignment scasg (e,x)(s) =s[x 7→ e(s)] e(s) ↓
⊥ o.w.

Sequencing scseq (c1 , c2)(s) =c2(c1(s)) c1(s) ↓
⊥ o.w.

Conditional sccnd (b,c1 , c2)(s =
c1(s) b(s) ↓ ∧b(s) = tt

c1(s) b(s) ↓ ∧b(s) = ff

⊥ o.w.

stwhl (b,c) = stcnd (b, stseq (c, stwhl (b,c)), stskp), but
this is not a definition. Instead:

Assume F : (A→ A⊥)→ (A→ A⊥):

1. Define seq ∀i ∈ N.fi : A→ A⊥ where f0 ≜
⊥ and fi+1 ≜ F(fi).

2. Define func f∞ : A → A⊥ st: f∞(a) ≜a′ ∃i.
[
fi (a) = a′ ,⊥

]
⊥ o.w.

3. Ass ∀i,a. [fi (a) ↓⇒ fi+1(a) = fi (a)].

By fixpoint theorem, f∞ is a fixpoint of F.
For any other fixpoint g of F, ∀a.[f∞(a) ↓⇒
f∞(a) = g(a)].

W (cw) ≜ stcnd (b, stseq (c, cw), stskp), so
scwhl (b,c) is a fixpoint of W .

1. Define ∀i.wi : Sc where w0 ≜ ⊥ and
wi+1 ≜W (wi).

2. Define w∞ : Sc where:

w∞(s)≜
s′ ∃i.

[
wi (s) = s′ ,⊥

]
⊥ o.w.

3. ∀s ∈ Σ ass wi (s)↓⇒wi+1(s) = wi (s).
4. By FT, scwhl (b,c) = w∞.

8 Hoare Logic

A formalism relating the initial and terminating
state of a program. Written with command C,
precond P and postcond Q. It is a deductive
proof system of triples {P} C {Q}. Assertion
lang is a lang for defining state predicates and
their semantics. It is an instance of first order
logic with equality, with values as integers and
assertions as properties of while statements:

v ∈ Vars≜ id | idlog

t ∈ Terms≜ v

P ,Q∈ Ass≜ tt | ff | P ∧Q | P ∨Q | P→Q

| ∀id.P | ∃id.P | t1 = t2

Note that ¬P ≜ P → ff. A term t in state s is
written as [[t]] (s)where [[·]] ⊆ Terms×State→ Z,

and [[P]] is the set of states that satisfy P in:

[[v]] (s) = s(v)

[[ff]]≜ ∅
[[tt]]≜ State

[[P ∨Q]]≜ [[P]]∪ [[Q]]

[[P ∧Q]]≜ [[P]]∩ [[Q]]

[[P→Q]]≜ [[¬P ∨Q]]

[[t1 = t2]]≜ {s | [[t1]] (s) = [[t2]] (s)}

[[∀v.P]]≜ {s | ∀n ∈⋉.s[v 7→ b] ∈ [[P]]}

[[∃v.P]]≜ {s | ∃n ∈⋉.s[v 7→ b] ∈ [[P]]}

Partial correctness states that for any asserts
P, Q and command C, ⊨ {P} C {Q} ≜ ∀s, s′ .[s ∈
[[P]]∧ 〈C,s〉 ⇓ s′ ⇒ s ∈ [[Q]]].
We can define rules of Hoare logic:

H-ASGN
` {P[E/X]} x ::= E {P}

H-SEQ
` {P} C1 {Q} ` {Q} C2 {R}
` {P} C1;C2 {R}

H-IF
` {P ∧B} C1 {Q} {P ∧¬B} C2 {Q}

` {P} B ? C1 : C2 {Q}

H-WHL
` {P ∧B} C {P}

` {P} m B : C {P ∧¬B}

H-CNSQ

`L P + s⇒ PW `L QS ⇒QW
` {PW } C {QS }

` {PS } C {QW }

Soundnessmeans any triple that can be derived
holds semantically:
` {P} C {Q} =⇒ ⊨ {P} C {Q}.
Completeness means any triple that holds se-
mantically can be derived:
⊨ {P} C {Q} =⇒` {P} C {Q}.

2

