
1 Kernels
Can be: monolithic (single black-box, like La-

tex). Single exec. bin with its own addr space.
Efficient calls, easy to write but complex design
& no protection within internal components.
Microkernel (min. functionality). Simple, less
error prone, clean server interface, server can
crash without bringing kernel down but high
IPC overhead. Hybrid - more structured design
but performance hit for user level servers.
2 Processes
Provide illusion of concurrency, isolate procs,
for simpler programming & better resource
man. OS context switches in response to
events/interrupts, (or when we need to change
the addr space). Data about procs is kept in proc
control block (PCB), in the proc table. Each
proc has a virtual CPU, its own addr space, open
file descs, PC, page table register, stack ptr, proc
man info, file man info. Context switches have
a direct cost & an indirect cost (cache misses,
TLB misses & pipeline flushes).
• void exit(int) - term with statcode.
• pid_t fork() - Duplicates proc. If < 0, err.

Returns child PID in parent proc, and 0 in
child proc.

• pid_t waitpid(pid_t, int*, int) - waits
for child pid, stores child stat at pointer, can
take optional flags (e.g. WNOHANG).

• void kill(pid_t, int) - kills pid with
SIGKILL, SIGTERM, SIGUSR1, etc.

Proc communication can use files, signals,
events, pipes, message queues, sockets, shared
memory, semaphores or more. Inter Proc
Comms (IPC) allows signals to be sent simi-
lar to hardware interrupts. By default, signals
terminate a proc, but may be ignored or han-
dled. SIGKILL & SIGSTOP cannot be ignored.
Use when exception occurs, for notifications,
kill(), etc.
Pipes connect the stdout of a proc to the stdin
of another for one-way comms.
3 Threads
Threads are exec streams that share an addr
space. In multithreading, a proc may use ≥ 1
threads, with individual PC, regs & stack. How-
ever, thread may write to another’s stack in
mem corruption, & concurrency bugs may oc-
cur. So, we have pthreads:
• int pthread_create(pthread_t, const

pthread_attr_t, void*, void*) - starts
thread, places id in pthread, uses attrs (NULL
default), runs specified void * function with
void * args.

• void pthread_exit(void *) - terminates
thread and makes value available to any suc-
cessful join. Called implicitly after start rou-
tine returns.

• int pthread_yield(void) - give up CPU. 0
if success.

• int pthread_join(pthread_t, void**) -
waits for thread to finish, and stores retval
at pointer.

Threads can be implemented as user level (ker-
nel is not aware of threads): fast creation, ter-
mination, switching & sync. Each programmay
have its own scheduler, but blocking syscalls
stop all threads, & non-blocking IO may be
used. Kernel level threads are managed by ker-
nel. Thread creation, termination, switching &
sync is slow requiring syscalls. However, block-
ing syscalls are easily accommodated. Hybrid
approaches exist.
4 Scheduling
A scheduler chooses which threads to preempt

& dispatch, ensuring fairness, avoiding starva-
tion, enforcing policies, minimising overhead &
maximising resource utilisation. For batch sys-
tems, throughput and turnaround time impor-
tant. Prioritise response time for interactive
systems. Non-preemptive - let proc run until
it blocks / releases CPU.
• First Come First Serve (FCFS) non-

preempt, each thread added to queue.
Easy to implement, no indefinite postpone-
ment. But, Head of Line (HOL) blocking if
a long proc is at the front of the queue.

• Round Robin (RR) is non-preemptive, ev-
ery thread is given a time quantum to run.
It is fair, has better response time. A larger
quantum means smaller overhead but larger
response time. A good quantum should be
much larger than context switch time, but
still provide low response time.

• Shortest Job First (SJR) is non-preemptive,
shortest job is run based on known run-times
or a heuristic.

• Shortest Time Remaining (STR) is preep-
tive versino of SJR. Allows new short jobs to
get good service.

• Fair Share RR divides the CPU into fractions
between users, using RR within each.

• Priority - jobs are run with highest priority.
Can be either static or dynamic, supplied by
the user or calculated.

In reality, many of these are used. We want to
favour short & IO bound jobs for shorter re-
sponse times & quickly determine the nature of
a job & adapt to changes:
• Multilevel Feedback Queues - each prior-

ity level has queue, which usually use RR
scheduling. Job priorities periodically re-
computedwith exponentially weighted moving
average, & starvation is prevented with ag-
ing. However, it is not flexible, reacts slowly
to changes, cannot donate priority, & allows
cheating.

• Lottery Scheduling - jobs receive n tickets
for a resource. When scheduling a resource,
the job with the most tickets is most likely to
receive it. Highly responsive & no starvation,
but unpredictable response time.

5 Synchronization
In a critical section of code a proc or thread
accesses a shared resource. Mutual exclusion
is required s.t. (1) no two procs are simultane-
ously in a CS, (2) no procs outside the CS may
block other procs from entering the CS, (3) no
procs wait forever to access CS, (4) no assump-
tions are made about the speeds of the procs.
We can achieve this by:
• Disabling interrupts - only used by single-

core kernel, not recommended.
• Strict Altercation - uses global access flag.

Violates (2), only should be used when wait-
ing is short (violate (4)).

• Peterson’s Algorithm solves this:
val turn = 0;

val interest = {0, 0};

def enter_critical(thread: Int) =

val o = 1 - thread; // Other

interest(thread) = 1;

turn = other;

while (turn == o && interest(o));

def leave_critical(thread: Int) =

interest(thread) = 0;

• Spin Locks - locks that need busy wait. They
also suffer from priority inversion, the low
priority thread holds the lock required for a
high priority thread.

• Locks within a proc, mutex are across procs.
User locks dont store list of waiters.

• Read/Write Locks treat R/W seperately - ex-
clusive access in W, not in R.

Semaphore: The scheduler must maintain a
queue of threads waiting on the semaphore when
its value is zero.
Lock: The scheduler tracks the owner of the lock
and a queue of threads blocked waiting for it.
Condition Variable: The scheduler maintains a
queue of threads waiting for a signal on the condi-
tion.
Mutex: The scheduler tracks lock ownership and
ensures mutual exclusion among threads.
Monitor: The scheduler enforces mutual exclusion
and manages condition queues within the monitor.
Lock granularity allows specifying CS size (e.g.
a record in a DB). We choose fine granularity to
reduce lock contention (num threads waiting on
lock), but this increases overhead. Read/write
locks give excl access in write, but simultane-
ous access in read.
Race condition occurs when > 1 threads R/W
shared data, and final result depends on timing
of their execution.
A strong mem model we assume sequential
consistency (atomic ops are exec in-order), so
we can use semaphores. down(s) recieves a sig-
nal (wait) on s. up(s) transmits a signal to s.
init(s, n) inits s with val n. In mutual exclu-
sion n0 = 1. In ordering n0 = 0 where initial
n0 indicates how many procs can access shared
data simultaneously.
A monitor has shared data, entry & internal pro-
cedures, an implicit lock, & ≥ 1 condition vari-
ables. It can wait(c), signal(c), broadcast(c) on
condition c. Signals do not accumulate, lost if
no waiters.
6 Deadlocks
The 4 conds are: (1) Mutual Excl. - each res
available or asgned to 1 proc; (2) Hold & Wait
- a proc can request res while holding others;
(3) No Preemption - res given to a proc cant be
forcibly revoked; (4) Circular Wait - procs in a
loop, waiting for res held by next.
We can ignore, recover (detect cycles in graph,
& recover with preemption, rollback or killing
procs), dynamically avoid (consider every re-
quest) or prevent (break a deadlock condition).
Deadlocks may also happen in communication.
Livelock means no blocked procs but system
not making progress (e.g. receive livelock or star-
vation).
7 Memory Management
Memman needs allocation & protection. Use
memman unit (MMU) to bind logical space to
physical space. Mem is split into kernel (low
addr mem) & user (high addr mem) partitions.
In contiguous alloc, base reg contains smallest

phys addr of proc & limit reg contains range
of logical addrs. MMU maps logical addrs dy-
namically. If the logical addr is outside the user
segment, we SEGFAULT.
Holes (blocks of avail mem) are scattered.
When a proc arrives, it is given a large enough
hole. OS maintains info on alloced & free par-
titions. We can use first, best (smallest hole)
or worst (largest hole) fit. Fragmentation may
occur. Internal frag when alloced mem > re-
quested mem. External frag when mem al-
located not contiguous. Compaction shuffles
memory to place free memory together in one
block. Slow. To stop mem limiting proc count,
we use swap part. Trans time is bottleneck.
Virtual mem seperates logical & phys addrs.
Only part of the proc needs to be in mem for
exec, & logical addr spaces can be very large.
Addr spaces can be shared, allowing fast proc
creation. Done via paging or segmentation.
7.1 Paging
Calc p and d!

Paging - logical addr spaces can be noncontigu-
ous. Procs are alloced phys mem in fixed-size
frames. Pages are the same size as frames. To
run a program of n pages, find n free frames
& build a page table. Generated addrs can be
divided into page number (page table index) &
page offset within each page. For addr space 2m

& page size 2n , page number has m − n bits &
page offset has n bits. Fixed size pages avoid
ext. frag. Memory Protection is done with pro-
tection bits per page table entry. A valid/invalid
bit indicates a legal or missing page.

Page tables can be stored with a base reg
(PTBR) & length reg (PTLR), but this requires
2 mem accesses (without paging, its 1). Instead,
a hardware cache is used as associative mem-
ory. 1 for all cores. To translate ⟨p,d⟩, if p is
in associated reg, get frame number; otherwise
get from page table. Translation Lookaside
Buffers (TLB) are the cache, & need to be ex-
pensively flushed after context switch. Enable
fast lookup of physical addr during addr trans
from virtual addr to physical addr. Per CPU
core. We can measure TLB performance with
effective access time (EAT) = (ϵ + t)α + (ϵ + (l +
1)t)(1 −α) where ϵ is time for assoc lookup, t is
time for mem access, l is num of assoc regs, α is
cache hit ratio.

• Heirarchical PTs, we have multi-level PTs
with many page numbers. This saves PT
space.

• Hashed PTs, contains chain of elems leading
to same loc. Search for match of virtual page
num on the chain & extract frame number.

• Inverted PTs, each entry contains virtual
addr of page stored in frame & info on the
proc that owns the frame. Decreases mem
required but increases search time.

7.2 Segmentation
Segmentation instead of paging provides a dy-
namic addr space & supports different protec-
tion kinds (e.g. read-only), but allocation is
harder & may suffer from ext. frag. Program-
mers are aware of segments but not pages.
7.3 Demand Paging
Demand Paging means bringing page into
mem only when needed, causing lower IO load,
less total mem, faster response time & support
for more users.
Before bringing into mem, we check if valid
mem (using valid bit), otherwise, page fault.
First reference always leads to page fault. If
the reference is valid mem, get an empty page
frame, swap required page into frame from
disk, update page table & restart faulting in-
struction; otherwise abort.
Now, EAT = (1− p)t+ pτ. where t is mem access
time & τ is page fault overhead + swap page in
+ swap page out + restart overhead.
Copy on Write (COW) shares pages between
parent & child procs. Then, if a write occurs,
the page is copied, optimising proc creation.
Free pages are already zeroed. Mem mapped
files map files into virtual addr space for sim-
pler IO.

1

fork() must be optimised so it doesnt copy
entire addr space when making a copy of
parent process image. Can modify COW to
give child its own page table with read-only
pointers to parents pages.

An optimal page replacement strategy min-
imises page faults, prevents over-allocation &
uses a dirty-bit to reduce overhead of page
transfers. In general, as the number of frames in-
creases, the number of page faults decreases.
• FIFO PR - replace the oldest page, using

a circular queue. May suffer from Belady’s
Anomaly - more frames⇒more page faults,
as FIFO doesn’t consider frequency of page
access.

• LRU PR - replaces least recently used page.
Since using system clock is expensive to
immplement (requires a search), we use a
reference bit, set to 1 on access. Periodically
set all frames to 0, & only replace frames
with 0. This is not a proper ordering. A sec-
ond chance algortihm combiners RR with
reference bit, setting a bit to 0 after it is read
to have a 1 in page replacement & perform-
ing 2 loops, meaning a free frame is more
likely to be found.

• LFUPR - replaces least frequently used page,
but this may replace a new page. Aging, or
resetting counters must be used.

• MFU PR - replaces most frequently used
page, but may remove page used heavily at
start of proc.

Excessive paging activity causes low CPU util-
isation (thrashing). Additionally, we want to
keep pages requested close in space & time
close physically (locality of storage) as pro-
grams request similar pages (locality of refer-
ence).
A working set model W (t,w) is a set of pages
referenced in time interval (t −w,t). A working
set clock algorithm adds to the clock algorithm
keeping track of the page’s current working set.
If the ref. bit is 0: if age < working set win-
dow, move to next page; otherwise if the page is
clean, replace, otherwise trigger a write back &
continue. Size of working set may be chosen by
observing page fault recovery: if the working
set is too small, the page fault frequency will be
high; if the working set is too large, the page
fault frequency will be low, but the working set
will be too large to fit in memory.
In local replacement, each proc gets a fixed al-
loc of physmem, OS needs to pick up changes in
working set size. In global replacement, mem-
ory is shared dynamically between procs, ini-
tial mem alloced ∝ proc size, & page fault fre-
quency is used to tune allocation.
8 Devices
Device independence separates logical device
properties from its physical properties. This
includes, device type, device instance, de-
vice variations (data transfer unit, supported ops,
sync/async ops, speed, shareable/single-user, err
conditions). On character devices, interrupt
handler is called for each byte. On block de-
vices it is called when entire block is trans-
ferred.
A device driver handles 1 device type. It im-
plements read/write, accesses device regs, ini-
tials ops & schedules requests, handles errors.

The OS’ device independent layer maps logi-
cal to phys devs, requests validation against dev
characteristics, allocates dedicated devs, user
access validation, buffering for performance,
block size independence & error reporting. De-
vices can be dedicated (Simple policy, alloced
for long periods for authed procs, e.g. printer),
shared (e.g. disks) & spooled (run async by a
daemon, no direct access allowed e.g. printer).
When buffer output, data transferred to OS
buffer. Proc suspends on full buffer. When
buffer input, OS reads ahead & reads are sat-
isfied from buffer. Proc suspends on empty
buffer. Buffered IO is used to smooth peaks in IO
traffic, & caters for differences in data transfer
between devs.
IO can be programmed (CPU is used to transfer
between mem & dev), interrupt driven (CPU is
interrupted when dev ready), or Direct Mem-
ory Access (DMA) (dev controller transfers di-
rectly to memwithout CPU). A blocking IO call
returns when the op completes. Proc is sus-
pended, & IO appears instantaneous. A non-
blocking IO call returns as much as available,
providing application level polling for IO. In
async IO, procs exec in parallel with IO ops,
with no blocking in interface - the IO subsystem
notifies completion with a callback, supporting
wait/check. This is very flexible & efficient, but
hard to use & can be less secure.
Loadable kernel modules provide dev
drivers. Code laoded on-demand, dynami-
cally linked. Kernel provides common IO
syscall interface to the virtual file system.
Devs are grouped into dev classes of similar
function. Major / minor IDs identify devs in
drivers. Same major ID means same driver.
Dev special files in /dev provide device ac-
cess. ioctl syscall supports special tasks.
Block IO subsystem modularises block IO
ops by placing common code in different lay-
ers. It caches data, or can bypass with direct
IO. Sockets used to exchange info locally.

9 Disk Management
HDDs has phys addrs composed of cylinder,
surface & sector addr. Modern disks use logical
sector addressing. Before a drive is used, it is for-
matted, containing a disk sector layout (split
between data, preamable & error correction code
(ECC)), accouting for cylinder skew (time to ro-
tate to next cylinder), & support for interleave
(time to rotate to the next sector). A high level
format also contains the boot block, list of free
blocks, root dir & an empty file system.
The seek time ts is time to move to cylinder.
The rotation time tr is time to rotate to sec-
tor. The transfer time tt is time to read/write
data. To transfer b bytes with N bytes per
track & r revolutions per second, the latency
is tr = 0.5r−1; tt = br−1N−1; T = ts + tr + tt .
Disk scheduling minimises access time by or-
dering requests based on head position. This
can be FCFS (no ordering) or SCAN aka eleva-
tor (choose requests for shortest ts in a preferred
direction, changing dir when reaching top/bot
cylinder; can result in long delays for extreme
location).

IO requests placed in req list. Block dev
drivers define req func, called by kernel.

SSDs consist of dies with blocks with pages.
Page size smallest unit to be read / written;
block size smallest unit to be ersaed. Faster &
more bandwidth than HDD.
RAID (Redundant Array of Inexpensive Disks)
uses an array of virtual drives acting as a sin-
gle drive, storing distributed data over to al-
low parallel operations (striping), & uses re-
dundant capacity to respond to failure. More
disks means more mean time to failure. A raid
controller manages it, can be software or hard-
ware. In general, fast concurrent reads, slow
writes. There are many RAID levels:
0 Striping - disks can seek & transfer con-

currently, with no redundancy.
1 Mirroring - mirror data across disks,

causing fast reads & slow writes. Failure
recovery is easy, costing storage over-
head.

5 Block Level Distributed XOR - dis-
tributed parity information. Potential
for some write concurrency, but good ef-
ficiency / redundancy tradeoff. Recon-
struction of failed disk is slow.

Mainmem can cache disk IO for faster opera-
tion. For this we need a replacement policy:
• LRU - Use a stack. Very efficient, but doesn’t

track popularity.
• LFU - Use a counter table. Blocks may be ac-

cessed many times in a short period, causing
a misleading counter.

• Frequency Based - Divide LRU stack into
new & old. Increment the counter if its not
already in new. Replace block with lowest
count in old. However, with this method,
blocks age out too quickly.

10 File Systems
Responsible for long term storage, sharing data,
concurrent access& data organisation. Stores info
on file name, type, & attributes, & provides
functions. File attributes include name, type, or-
ganisation (seq, rand, etc), creator, disk vol, start
addr, size used/alloced, owner, rights, usage info.

File attrs accessed with stat syscall, return-
ing info in a struct stat.

File size is variable, so we dynamically man
space with blocks. Small blocksize wastes
space for large files with high overhead for
managing data, transfer time & seek time. High
blocksize wastes space for small files with more
memory required for buffer space.
File data may be placed at contiguous addrs,
but this causes fragmentation when files are
deleted, & performance issues when resized.
Instead, block linkage has each block contain-
ing a ptr to the next. Although this speeds
up insertion/deletion (with ptr modification),
large blocksize causes internal frag, & small
blocksize causes slow read time due to many
seeks. Also wastes ptr space in each block.
A block alloc table (BAT) stores ptrs to blocks.
Dir points to first block, & next is determined
by chaining. A file alloc table (FAT) links
file names to their phys addr. It is stored on
disk, cached in mem. Fragmented disks can in-
creaase the FAT size.
Each file contains ≥ 1 index blocks, which store
a list of ptrs to data blocks. Index blocks may be
chained nby reserving last feq entries for ptrs

to more index blocks. This reduces seek time, &
can be further optimised by caching in memory.

inodes are linux index blocks. On file open,
OS opens inode table, stores on-disk inode
structure with dev number, inode num, ref-
count, maj/min dev number, etc.

To keep track of free blocks, we can use a free
list (linked list, low overhead, likely to cre-
ate noncontiguous blocks) or bitmap (1 bit per
block, quick to look for block in certain lo-
cations, slow overhead when searching entire
bitmap).
A fixed disk layout contains a boot block
(bootstrap code), super block (number of
blocks/inodes, block size, max file size, etc), in-
ode/block bitmaps, data. Most FS are heirar-
chical, with a root dir& pathnames. We can store
links (hard - logical addr, soft - pathname), but
these can cause problems removing files (hard
links need a link counter) or when traversing
(infinite loops). A mount operation combines
multiple FS into a single namespace. Hard links
may not be mounted. A mount point is a dir in
the native FS that is assigned to the root of the
mounted FS. Mount tables manage mounted
dir, storing the loc of mount points & devs.

EXT2FS has 4KiB blocksize with 5% reserved
for root. ext inode represents files and dirs,
first 12 ptrs direct ptrs to datablocks. 13th
ptr is an indirect ptr to a block of ptrs. 14th
ptr is a double indirect ptr to a block of sin-
gle indirect ptrs. 15th ptr is a triple indirect
ptr to a block of double indirect ptrs.
Block groups: clusters of contiguous blocks.
FS attempts to store related data in same
block group, reducing seek time.

In general, OS Layer Responsible for dynamic
prefetching of file blocks, as it is best positioned
to calculate good heuristics.
11 Security
A security policy specifies for what, for who &
what kind of access is granted. A securitymech-
anism specifies how to implement it. Security
can be People security e.g. social engineer-
ing; Hardware security needs physical access to
hack; Software security about finding bugs.
Authentication verifies users, based on poss-
esion (keys) or knowledge (passwords). Pass-
words suffer from turnover (guessing, or reuse),
and dictionary attacks. A hash of the pass is
stored instead of the pass itself. A rainbow ta-
ble is a precomputed table for reversing hash
funcs. It can be used to crack pass. A salt is a
random value that is added to the pass before
hashing. This makes it harder to crack passes
using rainbow tables.
Access control uses principle of least prive-
lage (PoLP) where users are given min rights.
Protection domains are a set of access rights
defined as objects & operations permitted,
represented in access control lists (ACL), each
elem is a list of rules per domain. Access is con-
trolled by object owner (discretionary) or system
(mandatory).

Users are principals with unique ID. root
(id=0) has full access. Each file/dir has ac-
cess rights (R/W/X). Each proc has real UID

(user who started proc), effective UID (ac-
cess control checks), and saved UID (option
for effective UID).

The bell-lapaluda model is no read up (read
at its level or lower) & no write down (write at
its level or higher), ensuring confidentiality not
integrity. The biba model is no write up (write
at its level or lower) & no read down (read at
its level or higher), ensuring integrity not con-
fidentiality.
12 Virtualisation
In virtualisation, a proc runs a full OS, pro-
viding security in isolation & legacy software
support. A virtual machine monitor (VMM)
partitions hardware resources to provide each
proc with a VM, intercepting all instrs & em-
ulating their exec (introducing overhead). We
only need to trap & emulate sensitive instrs. A
CPU is virtualisable if all sensitive instrs trap.
A hypervisor is a hardware VMM, can be type
1 (bare metal) or 2 (virtualization). 1 is faster but
needs hardware support, & 2 is more versatile.
Instead of emulation, binary translation can
run the code faster, scanning each block & re-
placing sensitive instrs with hypercalls. We can
handle unvirtualisable archs with paravirtual-
isation by binary translation. The virtual ma-
chine interface (VMI) is a set of standardised
hypercalls that can be used by any OS.
A phys map (PMAP) maps phys addrs to ma-
chine addrs for a VM, stored in the hypervi-
sor. Shadow page tables map virt addrs to
machine addrs, stored in the guest OS, used
by hardware MMU. On a miss, MMU searches
in shadow PT, then PF happens in the VMM,
where it looks for mapping in the guest OS’ PT.
If not found, a true PF occurs, forwarded to the
guest OS. Otherwise, a hidden PF occurs, & it
is added to shadow PT. VMM must sync guest
& shadow PT. On a TLB miss, MMU searches
in guest PT. If not found, true PF. Otherwise,
MMU searches in PMAP, TLB is updated & in-
str reexeced. Otherwise, hidden PF.
For the hypervisor to reclaim mem from a VM,
it allocates a balloon driver in the guest OS,
which it can inflate to use up memory in the
guest. The guest then swaps out pages under
pressure. Hypervisor reclaims memory allo-
cated by the ballon driver, & then deflates it.
Memory can be shared by mapping 2 phys ad-
drs to a machine addr, by computing a hash of
pages to find similar pages.

2

