
1 Parsing
Lexing converts input string to tokens with a regex
(matches literals, alternation, sequencing & itera-
tion), context free grammar (regex + recursion) or con-
text sensitive grammar (CFG + arbitrary state).
A token may have multiple meanings, or can be a
prefix to another token (e.g. >>). Tokenizers dont have
enough context. Instead, scannerless parsing operates
on character streams.
1.1 Context Free Grammar
There are two different types of CFG:

LL(k) LR(k)
Approach Top Down Bottom Up
Left Rec. No Prefers It

Good Errors Can be Weak
Ambiguity Up to k tokens.
Complexity O(n); O(1) choices O(n)

Any CFG can be passed in O(n3), and fully unam-
biguous with multiple parses (CYK algorithm). LL(k)
and LR(k) have ambiguities that can be resolved by
looking ahead k tokens. Aim for k = 1 languages.

A grammar is LL(1) if ∀ rules A→ α | β:
• fst(α)∩ fst(β) = ∅
• ϵ ∈ fst(α)⇒ [fst(β)∩ follow(A) = ∅]
• ϵ ∈ fst(β)⇒ [fst(α)∩ follow(A) = ∅]

1.2 Parsing Expression Grammar
A PEG is unambiguous by construction. Can parse
any LR(k) grammar, not necesarilly any CFG. Re-
turns a single parse tree in O(n) time with no back-
tracking, O(2n) time with backtracking on every de-
cision. It consists of: literals (’x’), variables (v), empty
(ϵ), sequencing (e1 e2), left biased alternation (e1 /

e2), negative lookahead (!e), grouping (e) and end of
file (eof). Additionally, we have redundant any char
(.), classes ([0-9]), optional (e?), ≥ 0 (e*), > 0 (e+)
and lookahead (&e).
PEGs resolve ambiguity with left biased alternation.
They are also greedy - they consume as much as they
can. More ambiguous branches should be to the left:

1 stmt <- "if" expr "then" stmt "else" stmt

2 / "if" expr "then" stmt

Do not use left recursive or nullable rules - cause in-
finite loops in PEGs. To reduce backtracing while
preserving meaning we left-factor e e1 / e e2 =>

e (e1 / e2). Do NOT e1 e / e2 e => (e1 / e2)

e. We resolve left recursion with: E <- E OP / T =>

E <- T OP*.

Renaming: Optional phase to distinguish vars of
the same name, ensuring each var is decl before
use.

2 Semantic Checking
Typecheckingmay be bottom-up (return the type of
child exprs and compare at every level) or top-down
(push info about expected types down the tree, check
at leaves). Wewant to parse not validate. It makes sure
types are sound.

Scopechecking makes sure vars are defined and
unique.

1 enum Constraint {

2 case Is(refTy: Type)

3 case IsNumeric

4 case IsRecord

5 }

6 object Constraint {

7 val Unconstrained = Is(?)

8 val IsArray = Is(KnownType.Array(?))

9 }

10

11 // Check if type matches constraint:

12 extension (t1: Type) def ~(t2: Type): Option[Type]

13 = (t1, t2) match {

14 case (?, t2) => Some(t2)

15 case (t1, ?) => Some(t1)

16 case (Array(t1), Array(t2)) => t1 ~ t2

17 case (t1, t2) if t1 == t2 => Some(t1)

18 case _ => None

19 }

20 extension (t: Type) def satisfies(c: Constraint)(

using ctx: Ctx[?]): Option[Type]

21 = (t, c) match {

22 case (t1, Is(t2)) => (t1 ~ t2).orElse {

23 ctx.error(Error.TypeMismatch(t1,t2))

24 }

25 case (?, _) => Some(?)

26 case (t@(T.Int | T.Float), IsNumeric) => Some(t)

27 case (t, IsNumeric) =>

28 ctx.error(Error.NonNumericType(t))

29 case (t@T.Record(_), IsRecord) => Some(t)

30 case (t, IsRecord) =>

31 ctx.error(Error.NonRecordType(t))

32 }

33

34 // Ctx Definition:

35 class Ctx[C](i: TypeInfo, errs: mutable.Builder[

Error, C]) {

36 def errors: C = errs.result()

37 def typeOf(v: String): KnownType = i.var(v)

38 def typeOf(r: String, f: String):

39 Option[KnownType] =i.rec(f).get(f)

40 def error(err: Error) = errs += err

41 }

42

43 // Actually check, for example:

44 def check(e: Expr, c: Constraint)(using Ctx[?]): (

Option[Type], TypedExpr) = e match {

45 case Expr.Add(x, y) => checkNum(x, y, c)(

TypedExpr.Add.apply)

46 case Expr.Num(n) => (T.Int.satisfies(c),

TypedExpr.Num(n))

47 }

48

49 def checkNum(x: Expr, y: Expr, c: Constraint)

50 (build: (TypedExpr, TypedExpr, Type) => TypedExpr)

51 (using Ctx[?]): (Option[Type], TypedExpr) =

52 val (lt, xTyped) = check(x, IsNumeric)

53 val (rt, yTyped) =

54 check(y, lt.fold(IsNumeric)(Is(_)))

55 val ty = best(lt, rt)

56 (ty.satisfies(c), build(xTyped, yTyped, ty))

57

58 def best(t1: Option[Type], t2: Option[Type]): Type

= (t1, t2) match {

59 case (Some(?), Some(t)) => t

60 case (Some(t), _) => t

61 case (None, t) => t.getOrElse(?)

62 }

3 Basic Codegen

1 genStmt (Asgn id e) = genExpr e ++ [Pop id]

2 genStmt (Seq s1 s2) = genStmt s1 ++ genStmt s2

3 genStmt (For id e1 e2 body) =

4 genExpr e1 ++ [Pop id] ++ -- Init loop var

5 [Label l1] ++ -- Define loop start

6 -- Check the loop condition:

7 genExpr e2 ++ [Push id, CmpGt, JTrue l2] ++

8 genStmt body ++ -- Loop body

9 [Push id, Push 1, Add, Pop id] ++ -- Inc counter

10 [Jmp l1, Label l2] -- Jump back to loop start

11

12 genExpr (Binop op e1 e2) = genExpr e1 ++ genExpr e2

++ genOp op

13 genExpr (Unop op e) = genExpr e ++ genOp op

14 genExpr (Ident id) = [Push id]

15 genExpr (Const n) = [Push n]

3.1 Using Registers

1 genExpr (Const n) r = [LoadImm r n]

2 genExpr (Ident i) r = [Load r i]

3 genExpr (BinOp op e1 e2) r = genExpr e1 r ++

genExpr e2 (r + 1) ++ genOp op r (r + 1)

4

5 -- We also allow special cases for imm operands

6 genExpr (BinOp op e (Const n)) r = genExpr e r

7 ++ genOpImm op r n -- e.g. [AddImm r n]

8 genExpr (Add (Const n) e) r

9 | commutative op = genExpr e r ++ genOpImm op r n

10

11 -- If we run out of regs we can push onto stack:

12 genExpr (Binop op e1 e2) r

13 | r == MAXREG = genExpr e2 r ++ [Push r] ++

genExpr e1 r ++ genOpStack op r

14 | otherwise = genExpr e1 r ++ genExpr e2 (r + 1)

++ genOp op r (r + 1)

3.2 Sethi-Ullman Algorithm
Let A ◦ B be an operation, where expr A requires a
regs and B requires b regs. If A is evaled first, max
regs used is max(L,R+1); otherwise its max(L+1,R).

1 weight (Const _) = 1

2 weight (Ident _) = 1

3 weight (Binop _ e1 e2) = min [c1, c2]

4 where c1 = max (weight e1) (weight e2 + 1)

5 c2 = max (weight e1 + 1) (weight e2)

6

7 -- For commutative ops

8 genExpr (Binop op e1 e2) r =

9 if weight e1 > weight e2

10 then genExpr e1 r ++ genExpr e2 (r + 1) ++

genOp op r (r + 1)

11 else genExpr e2 r ++ genExpr e1 (r + 1) ++

genOp op r (r + 1)

12

13 -- For non-commutative ops

14 genExpr (Binop op e1 e2) (r:r':rs) =

15 if weight e1 > weight e2

16 then genExpr e1 (r:r':rs) ++ genExpr e2 (r':rs)

++ genOp op r r'

17 else genExpr e2 (r':r:rs) ++ genExpr e1 (r:rs)

++ genOp op r r'

The Sethi-Ullman algorithm doesn’t have context
of the vars or exprs around it, so it cannot keep
regs to store the same var.

3.3 Graph Colouring
Reg alloc has a very big impact on performance. We
can build a smart allocator with graph colouring:
1. A tree-walking translator makes intermediate code

where temp values are saved in named location.
2. Make an interference graph: nodes are temp lo-

cations, linked by an arc if the values must be
stored simultaneously (their live ranges overlap).

3. Try to colour the nodes, obtaining a reg allocation.
Although this is slow, a fast heuristic can be used. If
this fails, we must spill into memory. For efficiency,
prioritise nesting depth when spilling (dont spill in-
nermost loop); perform a split that enables colouring.
3.4 Function Calls
To make sure caller args end up in the correct regs,
we can use register targeting. To ensure regs dont
get overwritten, we have caller-saved and callee-
saved regs. Since neither knows info about the other,
we must save ALL regs when calling.

If a variable persists after a function call, then saving
in caller saved avoids clobbering value. The structure
of the stack when a function is called:

New Local Vars

Old Frame Pointer

Passed Params

Return Addr (foo)

SP

FP

4 Optimisation
Peephole optimisation replaces obviously inane as-
sembly code patterns with more efficient ones. There
are infinite possibilities, but phase ordering problem -
which order to we apply optimisations in.
4.1 Loop Optimisation
• Loop Invariant instructions (operands outside the
loop) can be moved out of the loop.

• Strength Reduction replaces induction variable
(value changes by loop invariant amount each it-
eration) with a simpler expression. You can repr
mulitple ind vars with 1 reg if they have a linear
relationship (1 in terms of other).

• Control Var Selection replaces loop control vari-
able (e.g. i) with an induction var used in the loop.

4.2 Loop Optimisation - Finding an Invariant
A node (instr) defines a variable if it assigns a value
to it. It uses a variable if it reads its value. A defini-
tion is loop invariant iff all the defs of each operand
come from outside the loop or theres only one reach-
ing def and that def is loop invariant. An instruction
is loop-invariant only if the things it uses are also loop-
invariant or fixed outside the loop.

Reaching def: the definition of var t reaches a point
p if theres a path from the def to p with no interven-
ing redefinition of t. It is relevant iff it is also used in
the instr.

ReachIn[n] =
∪

p∈pred(n) ReachOut[p]

ReachOut[n] = Gen[n]∪ (ReachIn[n]− Kill[n])

Where Gen is the def generated at n and Kill is the
defs that are invalidated at n. To solve, start with all
sets ∅, it. until stable (monotonic & converging pro-
cess). We can use this to find loop-invariant instrs.

4.3 Loop Optimisation - Finding Loop Header
To place it correctly we need to find the loop header.
Node d dominates n if every path from the start node
to n must pass through d. Every node dominates it-
self, and the start node dominates every other node.
To find dominators:
1. Doms[s] = {s} for the start node.
2. Doms[n] = ξ - all nodes is most conservative guess.
3. Iterate Doms[n] = {n} ∪ (

∩
p∈pred(n) Doms[p]). This

converges quicky due to monotonic shrinkage.
A back edge is an edge from n to h s.t. h dominates n:
represents a loop. The natural loop is set S containing
header h such that:
• ∀s ∈ S , ∃ a path from s to h.
• ∀s ∈ S , ∃ a path from h to s.
• ∀s < S , ∄ a path from s to any of S \ {h}.
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These may correspond to a single source-code loop
(e.g., multiple exits or re-entry points).

If loop B has header b and lies entirely within loop A
with header a and b ∈ A then B is nested in A. A loop
tree contains each loop as a node.

Since a loop header can havemultiple predecessors, in-
sert a new block (pre-header) that has a single edge
to the loop header, is its only predecessor. This is a
save place to hoist invariant code.
4.4 Loop Optimisation: Hoist Safety
Not all loop invariant expressions can be hoisted:
• Instruction must dominate all loop exists.
• One def of the var exists in the loop (uniqueness).
• The var is not live out from the pre-header.
Single Static Asgnment (SSA) ensures each var is
asgned once by splitting overlapping live ranges.
This removes the need to check for uniqueness and
liveness. At control flow joins (i.e. after an if-else),
we insert a dummy phi-node a3 = φ(a1, a2) which
magically picks a1 or a2 depending on which path is
taken. This is later eliminated during codegen.
4.5 Data Flow Analysis
Each node in a control flow graph stores its using
regs, defs regs and succsessor ids. We define:
• IN[n]: Set of live regs immediately before n: live
after n and not overwritten by n, or it is used by n.

• OUT[n]: Set of live regs immediately after node n:
it is live before any of n’s successors.

OUT[n] =
∪

s∈succ(n) IN[s]

IN[n] = uses[n]∪ (OUT[n]− defs[n])

To find all live ranges, it. until fixed point is reached:

for (Node n : cfg) {

Var[] IN = [];

Var[] OUT = [];

}

do {

for (Node n : cfg) {

Var[] oldIN = IN[n];

Var[] oldOUT = OUT[n];

IN[n] = uses[n] + (OUT[n] - defs[n]);

OUT[n] = succ(n).map(IN[_]).reduce(_ + _);

}

} while (IN[n] != oldIN || OUT[n] != oldOUT);

From the live ranges we derive interference graph,
then colour and update the reg allocation.
4.6 Loop Scheduling
Loop Scheduling Optimisation reorders how loops
are executed to use vector instructions, multiple cores
and improve cache utilisation.
4.7 Loop Scheduling: Dependence Analysis
To use vector instrs, we must verify iterations are
truly parallel - we must find loop carried depen-
dence (whether each iteration depends on the pre-
vious). To detect this:
1. Let IN[S] be the set of mem locs read by S .
2. Let OUT[S] be the set of mem locs written to by S .
Reordering is constrained by 4 types of dependence:

• Data dependence: S1δ S2 or OUT[S1] ∩ IN[S2]. S1
must write something before S2 can read it.

• Anti dependence: S1δ S2 or IN[S1] ∩ OUT[S2]. S1
must read something before S2 overwrites it.

• Output dependence: S1δo S2 or OUT[S1]∩ OUT[S2].
If S1, S2 write to a loc, S1 must write first.

• Control dependence: S1δ
c S2. S1 determines

whether S2 should execute.
Consider two iterations I1, I2. A dependence occurs
between statements Sp , Sq if Sp in I1 references the
samemem loc as Sq in I2. This may occur if they both
refer to a common array A for some subscript expr φ.
If Sp = A[φp(I )] and Sq = A[φq(I )] then a dependence
occurs iff ϕp(I1) = ϕq(I2) for integer I1, I2 in the loop
bounds.

We have a data dependence if:

• A[φp(I )] ∈ OUT[Sp] and A[φq(I )] ∈ IN[Sq].
• The asgns precede uses: ∀I1, I2.I1 < I2⇒ Spδ< Sq .

An anti dependence if the uses precede the asgns:
∀I1, I2.I1 > I2 ⇒ Spδ<Sq . If ∃I1, I2.I1 < I2 ∧
∃I1, I2.I1 > I2 then Sp δ∗ Sq : we must respect execution
ordering, but can’t classify dependency. If ∀I1, I2.I1 =
I2 there are no dependencies within iteration of the
loop, but no loop-carried dependencies: Sp δ= Sq .

If ∀I1, I2.I2 − I1 = k then k is the dependance dis-
tance. When optimising for cache performance, con-
sider reuse relationship IN[S1] ∩ IN[S2]. There is
no dependence, but cache performance is faster for
smaller reuse dist.
4.8 Loop Scheduling: Nested Loops
To show iteration-to-iteration dependencies in a
nested loop we use an iteration space graph:

S00 S01 S02

S10 S11 S12

S20 S21 S22

δ δ

δ δ

δ δ

δ δ δ

δ δ δ

In this example, the inner loop is not vectorisable
since there is a dependence chain linking successive
iterations. Similarly, outer loop is not parallel. This
loop nest has two dependence distance vecs, (1,0) by
outer loop and (0,1) by inner loop.

This loop is interchangable - we can change which
loop is inner and outer - but this does not improve
vectorisability or parallelisability. An interchange is
invalid if ∃ dependence distance vec (i, j) s.t. i, j > 0.

One transformation we can do is skewing the com-
putation:

S00 S01 S02

S11 S12 S13

S22 S23 S24

δ δ

δ δ

δ δ

δ δ δ

δ δ δ

Nowwe can interchange for top down lexicographic
traversal (i.e. S00,S01,S11,S02,S12,S22, · · · ). Now, it-
erations in each column are independent, so the in-
ner loop is vectorisable.

A loop nest can be interchanged if the transposed
dependence dist vecs are lexicographically forward.
Skewing is always valid, exposing parallelism by
aligning parallel iterations with one of the loops.
Skewing can make interchange valid.

5 Runtime Organisation
• Primitives require diffmem amounts. Optimal ac-
cess aligns vars to boundaries / PCIE bandwidth.

• Records are key-val pairs. Can be different sizes,
but allocated consecutively in mem for easy access
and efficiency.

• Arrays are groups of vars of the same type. Al-
loced conescutively, access with base addr & offset.

• Objects referenced by ptr, contain ptr to method
lookup table and raw vals for data fields (access
with addr offset). To call a method, pass object
reference as a hidden parameter. For inheritance
and overriding, a new method lookup table is cre-
ated, with a ptr to the parent’s method lookup ta-
ble. This allows for dynamic dispatch (selecting
impl of a polymorphic operation). Dynamic bind-
ing can also be done by copying an obj ref.

Local vars persist for the duration of the method call.
Located in the stack seg of the program addr space.
Access with a frame ptr register (pointing to stack
frame base) and an offset.

Global vars persist for the duration of the program.
Located in the data seg (static) of the program addr
space. Access with base mem addr, no frame ptr re-
quired.

Dynamic vars persist until garbage collection. Lo-
cated in the data set (heap) of the program addr space.
6 Heap Management
• Heap Allocation maps dynamic vars in the heap.
• Heap Deallocation frees inactive mem space.
• Heap Compaction improves mem utilisation and
efficiency while removing fragmentation.

Heap is managed in blocks, containing housekeeping
data (e.g. size, status) and object data (fields, meth-
ods). Object references point to the object data, not
the start of the block. Traditional alloc done with
free list of free blocks in the heap. We do:

1. If a free block of exactly the right size exists, re-
turn it.

2. If a bigger block exists, split into (a) of right size
and (b) of remaining size; return (a).

3. If no block found, request mem from OS.

This is slow. Instead, maintain many free lists for dif-
ferent block sizes, or allocate more space for data that
may grow. We need to consider memory alignment
and the negative impact on cachingwhenwe dont have
spacial locality.

6.1 Garbage Collection
GC dynamically deallocs from the heap by one of:

• Reference Counting - each block keeps refcount
in housekeeping data. If copied, incremented. If
deleted, decremented by num of loc vars that ref
them. When the count reaches zero, deallocate
mem block. Cascade to any obj it points to. In total
the number of objs pointing into it. Extra code re-
quired for pointer manipulation, and cannot han-
dle cyclic refs.

– When: Immediately on count reaching zero.
– Perf: Low overhead per operation, good for

short-lived objects. Fails with cycles, and over-
head grows with pointer-heavy code.

• Mark & Sweep: Phase 1 marks blocks as live that
are reachable from non-heap references. Phase
2 sweeps through heap, deallocating unmarked
blocks. Slower than refcount, but handles cyclic
refs. Also batches deallocs for efficiency.

– When: Triggered when heap usage crosses
threshold or periodically.

– Perf: Pause-the-world; can cause latency spikes.
Better throughput than refcounting, especially
with cycles.

• Pointer Reversal avoids using extra mem when
traversing blocks. Whenmoving from child to par-
ent, overwrite child pointer back to its parent. Af-
ter finishing, backtrack to the parent and restore
the original pointer. Faster than mark & sweep but
requires more memory.

– When: During mark phase of mark & sweep.
– Perf: Reduces stack space (no recursion), but in-

curs pointer rewrites. Mostly theoretical or used
in constrained systems.

• Two Space: Split heap into from space and to
space. When from space full, copy all live blocks to
to space. No pointer manipulation, better spacial
locality, not efficient for large heaps.

– When: When from space fills up.
– Perf: Fast allocation (bump pointer), fast collec-

tion (copying). Wastes 50% of heap. Poor fit for
long-lived or large objects.

• Generational - divide heap into areas based on
block age. Adaptively perform different GC algo-
rithms for different areas.

– When: Young gen collected frequently, old gen
rarely.

– Perf: Optimized for the weak generational hy-
pothesis (most objects die young). Reduces
pause time, excellent for interactive apps. Com-
plexity in implementation.
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