1 Parsing 1 enum Constraint { 13 genExpr (Unop op e) = genExpr e ++ genOp op Return Addr (fOO)
. . . e s . 2 case Is(refTy: Type) 14 genExpr (Ident id) = [Push id]
Lexing cor}verts input strl'ng to tokens 'w1th a‘r@ga,\ 3 [o —— 15 genExpr (Const n) = [Push n] Passed Params
(matches literals, alternation, sequencing & itera- 4 case IsRecord

tion), context free grammar (regex + recursion) or cor- Z }b T 3.1 Using Registers 0Old Frame Pointer , FP
I’ . o ec onstrain
text sensitive grammar (CFG + arbitrary state). > ISR oo Is(?) 1genExpr (Const n) r = [LoadImm r n] New Local Vars N Sp
A token may have multiple meanings, or can be a 8 val IsArray = Ls(KnownType.Array(?)) 2genExpc {Ident) r = [Load c il $
3 A 9} 3 genExpr (BinOp op el e2) r = genExpr el r ++
prefix to another token (e.g. >). Tokenizers dont have 0 genExpr e2 (r + 1) ++ genOp op r (r + 1)
enough context. Instead, scannerless parsing operates 11 // Check 1f type matches Eons!rainl:- _ g” T U S 4 Optimisation
on character streams. 12 extension (t1: Type) def ~(t2: Type): Option[Type]) L. .) .
13 = (t1, t2) match { 6 genExpr (BinOp op e (Const n)) r = genkExpr e r Peephole optimisation replaces obviously inane as-
1.1 Context Free Grammar 14 case (?, t2) ~> Some(t2) ; *E ge"?pA(Ijrgm(gp rt" . T'g‘ (GRER TN sembly code patterns with more efficient ones. There
. 1, 2 > s 1 genExpr onst n) e) r]
There are two different types of CFG: 12 zji: z;nay:ﬂ), Array (t2)) :i t(;mi(tz) 9 | commutative op = genExpr e r ++ genOpImm op r n are infinite possibilities, but phase ordering problem -
LL(k) LR(k) 17 case (t1, t2) if t1 == t2 => Some(t1) 10) which order to we apply optimisations in.
18 CRSE > None 11 -- If we run out of regs we can push onto stack: L. .
Approach Top Down Bottom Up o - 12 genExpr (Binop op el e2) r 4.1 Loop Optimisation
Left Rec. No Prefers It | 20 extension (t: Type) def satisfies(c: Constraint)(13 | f gz:nEMxAp)(fEf1 s gff[;f;opeszt;ckﬂop[Pr“Sh ale e Loop Invariant instructions (operands outside the
i 0 C ?]): Opti T
Good Errors Can be] Weak . “Scl)"%";ttc’;] (“[)8 @ptiecmimype] 14 | otherwise = genExpr el r ++ genExpr e2 (r + 1) loop) can be moved out of the loop.
Ambiguity Up to k tokens. 22 case (t1, Is(t2)) => (t1 ~ t2).orElse { ++ genOp op r (r + 1) e Strength Reduction replaces induction variable
Complexity [O(n); O(1) choices | O(n) zi) ctx.error(Error.TypeMismatch(t1,t2)) 3.2 Sethi-Ullman Algorithm (vah.1e ;hapies by lo;)p invariar}t amgunt each it-
Any CFG can be passed in O(n?), and fully unam- 25 case (2, _) => Some(?) Let A o B be an operation, where expr A requires a eration) with a simpler expression. You can repr
biguous with multiple parses (CYK algorithm). LL(k) 26 case (t@(T.Int | T.Float), IsNumeric) => Some(t) regs and B requires b regs. If A is evaled first, max mulitple ind vars with 1 reg if they have a linear
. ey 27 case (t, IsNumeric) => 3 . 3 3 relationshi 1 in terms of other).
and .LR(k) have amb1gu1t1.es that can be resolved by 5 etx.error (Error. NonNumericType(t)) regs used is max(L, R + 1); otherwise its max(L +1,R). « Control Vapr (Selection replaces)100 control vari-
looking ahead k tokens. Aim for k = 1 languages. 29 case (t@T.Record(_), IsRecord) => Some(t) Tweight (Const _) = 1 ble (i) with an ind It3 pd' the 1
3 case (t, IsRecord) —> 2 weight (Ident _) = 1 able (e.g. i) with an induction var used in the loop.
Agrammar is LL(l)ifV rules A - « | [37: 31 ctx.error(Error.NonRecordType(t)) 3 weight (Binop : el e2) = min [c1, c2]
o fst(a)Nfst(f)=0 32 } 4 where ¢l = max (weight el) (weight e2 + 1) s : _Find; :
s eefst(a)=[fst(f)Nfollow(A)=0] % PR — 5 €2 = max (weight el + 1) (weight e2) i.Z dLozp ?I;t;mf_;satlon F.H;(linf.in In.varlantl
_ 34 tx Definition: 6 node (instr) defines a variable if it assigns a value
* €€ fst(ﬁ) = [fSt(fX) ﬂfollow(A) - 0] 35 class Ctx[C](i: TypelInfo, errs: mutable.Builder] 7 -- For commutative ops to it. It uses a variable if it reads its Valueg A defini-
1.2 Parsing Expression Grammar frror, S04 e (Bop ap o] oF) £ = tion.is loop invariant iff all the defs of eac.h operand
. . : 36 def errors: C = errs.result() 9 if weight el > weight e2 g e
A PEG IZ unambiguous by COHStl"thtlon. Can parse 37 def typeOf(v: String): KnownType = i.var(v) 10 then genExpr el r ++ genExpr e2 (r + 1) ++ come from outside the loop or theres only one reach-
any LR(k) grammar, not necesarilly any CFG. Re- 55 der type0r(r: String, f: String): gentp ap ¢ (F @ 1) ing def and that def is loop invariant. An instruction
turns a single parse tree in O(n) time with no back- 39 Option[KnownType] =i.rec(f).get(f) 11 else genExpr e2 r ++ genExpr el (r + 1) ++ tng det)) pu o -
tracking, O(2") time with backtracking on every de- * def error(err: Error) = errs += err gen0p op ¢ (r + 1) is loop-invariant only if the things it uses are also loop-
.. ’ . . ;o . 41} 12 invariant or fixed outside the loop.
cision. It consists of: literals ("x "), variables (v), empty 42 13 [T T invariant or fixed outside the loop
(6)1 sgq“@,ngjng (e1 92)’ [cft biased alternation (91 | 431/ Actual ly‘check P f<-7r e><?”“P1€_3?) a1t 14 gevExpr. (Binop op e? e2) (r:r':rs) = Reaching def: the definition of var t reaches a point
e2), necative lookahead (1e), erouping (€) and end of ** 4¢f check(e: Expr, c: Constraint)(using Ctx[?]): { 15 if weight el > weight e2 p if theres a path from the def to p with no interven-
, 1eg , 8 pmng Option[Type], TypedExpr) = e match { 16 then genExpr el (r:r':rs) ++ genExpr e2 (r':rs) P
file (eof). Additionally, we have redundant any char 4s case Expr.Add(x, y) => checkNum(x, y, c)(oo oo op # 0 ' ing redefinition of t. It is relevant iff it is also used in
(.), classes ([0-91), optional (e?), > 0 (ex), > 0 (e+) TypedExpr.(Ad)d.app(ly) (o) 17 else genExpr e2 (r':r:rs) ++ genExpr el (r:rs) the instr.
46 case Expr.Num(n) => (T.Int.satisfies(c), ++ genOp op r r'
and lookahead (&e). T
ypedExpr.Num(n))
PEGS resoive amb(;gmtﬁ with left biased ult}n;rnatﬁm. :g } The Sethi-Ullman algorithm doesn’t have context ReachIn[n] = Upepred(n) ReachOut[p]
oo v o b Rt o 5 e s rs sl otk s =G st -0 1
. + 50 (build: ypedtxpr, lypedtxpr, Type) => Typedtxpr regs to store the same var.
o . B B . 51 (using Ctx[?]): (Option[Type], TypedExpr) = 8
B L oxRr hen ot felser stmt 52 val (Lt, xTyped) = check(x, IsNumeric) 3.3 Graph Colouring Where Gen is the def generated at n and Kill is the
expr hen stm E: = > : . . .
‘ ’ l :i Vdihéiiiyﬂﬁ?illd(TsNumeric)(Ts(_))) Reg alloc has a very big impact on performance. We defs that are invalidated at n. To solve, start with all
oS ive .55 val ty = best(lt, rt N can build a smart allocator with graph colouring: sets 0, it. until stable (monotonic & converging pro-
Do not use left recursive or nullable rules - cause in- val Sty) = besit(ot) 1. A tree-walking translator makes intermediate code) (; ¢ lverging p
finite loops in PEGs. To reduce backtracing while 5 (ty.satisfies(c), build(xTyped, yTyped, ty)) here t S 1 di d locati cess). We can use this to find loop-invariant instrs.
) ELS. 57 where temp values are saved in named location.
preserving meaning we left-factor e el / e e2 => 58 def best((t11: ng)tioanhyp{e], t2: Option[Type]): Type 2. Make an interference graph: nodes are temp lo- 4.3 Loop Optimisation - Finding Loop Header
- = (t1, t matc . . . K .

e (el / e2). Do NOT§1 e ./ e2 e => (el [e2) = (Some(?), Some(t)) => t cat1ons,.l1nked by an arc .1f ‘the values must be T, place it correctly we need to find the loop header.
T reon i £ BOPTT 2 e T D L seortasern e s Shoriably, Node d dominates nif every path rom the start node
<— . 61 case (None, t => t.getOrElse(? . oul), 1 . : H

* 62 } Although this is slow, a fast heurlst%c cangbe used. If to nmust pass through d. E'f“’? node dominates it-
lilenaming: Optional Phase tohdistir.lglgshlerfs of 3 Basic Cod this fails, we must spill into memory. For efficiency, selj::,i a(riuilithe.start node dominates every other node.
the same name, ensuring each var 1s decl betore asic Lodegen prioritise nesting depth when spilling (dont spill in- To find dominators:
use. 1genStmt (Asgn id e) = genExpr e ++ [Pop id] nermost loop); perform a split that enables colouring. 1. Doms|[s] = {s} for the start node. .

ic Checki 2 genStmt (Seq si1 s2) = genStmt s1 ++ genStmt s2 3.4 Function Calls 2. Doms[n] = & - all nodes is most conservative guess.

2 Semantic Checking s genStmt (For id el e2 body) =) To make sure caller args end up in the correct regs, 3. Iterate Doms[n] = {n} U (Npepred(n) Doms|[p]). This
Typechecking may be bottom-up (return the type of ‘5‘ ?E;E:?rlﬂ : [rj"gm'(?']m*’]’m;; i’:;:t loep e we can use register targeting. To ensure regs dont converges quicky due to monotonic shrinkage.
chlldhe.xlzrs ;nd comparedat ever}é level)hor top—d}(l)WIll 6 - Check the loop condition: get overwritten, we have calle?—saved and callee- A pack edge is an edge from n to h s.t. h dominates n:
(pllls injo about expected types ,(»:jwnt etreﬁ'c e ZZEEI?& gid;:iplth;gé E:gst Jrue 21 saved regs. Since neither knows info about the other, representsa loop. The natural loop is set S containing
at eaves)' We Lgaill‘ to parse not validate. It makes sure 9 [Push id, Push 1, Add, Pop id] ++ -- Inc counter we must save ALL regs when Calhng' header h such that:

types are sound. 10 [Jmp 11, Label 12] -- Jump back to loop start If a variable persists after a function call, then saving ¢ VYse S,da path from s to h.

. . 1" . . .
Scopechecking makes sure vars are defined and |, genpepr (Binop op ef e2) = genfxpr el ++ genExpr ez i caller saved avoids clobbering value. The structure + Vse S, 3 a path from ki to s.

unique. ++ genOp op of the stack when a function is called: e Vseg$,fa path from s to any of S\ {h}.

These may correspond to a single source-code loop
(e.g., multiple exits or re-entry points).

If loop B has header b and lies entirely within loop A
with header a and b € A then B is nested in A. A loop
tree contains each loop as a node.

Since a loop header can have multiple predecessors, in-

sert a new block (pre-header) that has a single edge

to the loop header, is its only predecessor. This is a

save place to hoist invariant code.

4.4 Loop Optimisation: Hoist Safety

Not all loop invariant expressions can be hoisted:

¢ Instruction must dominate all loop exists.

* One def of the var exists in the loop (uniqueness).

* The var is not live out from the pre-header.

Single Static Asgnment (SSA) ensures each var is

asgned once by splitting overlapping live ranges.

This removes the need to check for uniqueness and

liveness. At control flow joins (i.e. after an if-else),

we insert a dummy phi-node a3 = ¢(ay,a3) which

magically picks a; or ap depending on which path is

taken. This is later eliminated during codegen.

4.5 Data Flow Analysis

Each node in a control flow graph stores its using

regs, defs regs and succsessor ids. We define:

e IN[n]: Set of live regs immediately before n: live
after n and not overwritten by #, or it is used by n.

* OUT[n]: Set of live regs immediately after node n:
it is live before any of n’s successors.

OUT[n] = Usesucc(n) IN[s]
IN[n] = uses[n] U (OUT[n] — defs[n])

To find all live ranges, it. until fixed point is reached:

for (Node n : cfg) {
Var[] IN = [];
Var[] OUT = [];
}
do {
for (Node n : cfg) {
Var[] oldIN = IN[n];
Var[] o1dOUT = OUT[n];
IN[n] = uses[n] + (OUT[n] - defs[n]);
OUT[n] =
}
} while (IN[n] !'= oldIN || OUT[n] !=

From the live ranges we derive interference graph,
then colour and update the reg allocation.

4.6 Loop Scheduling

Loop Scheduling Optimisation reorders how loops
are executed to use vector instructions, multiple cores
and improve cache utilisation.

4.7 Loop Scheduling: Dependence Analysis

To use vector instrs, we must verify iterations are
truly parallel - we must find loop carried depen-
dence (whether each iteration depends on the pre-
vious). To detect this:

1. Let IN[S] be the set of mem locs read by S.

2. Let OUT[S] be the set of mem locs written to by S.
Reordering is constrained by 4 types of dependence:

* Data dependence: S10 Sy or OUT[S1] N IN[Sz]. S5
must write something before Sy can read it.

succ(n).map(IN[_]).reduce(_ + _

+ Anti dependence: S16 Sy or IN[S1]NOUT[S,]. S;
must read something before Sy overwrites it.

* Output dependence: 516°S; or OUT[S1]NOUT[S,].
If S1, Sy write to a loc, Sy must write first.

* Control dependence: S16°S;. Sy determines
whether S) should execute.

Consider two iterations I1, I. A dependence occurs

between statements Sp, Sq if Sp in I} references the

same mem loc as S, in I. This may occur if they both

refer to a common array A for some subscript expr ¢.

If Sp = Alpp(I)] and Sy = A, (I)] then a dependence

occurs iff ¢,(I1) = $q(12) for integer I, I in the loop

bounds.

We have a data dependence if:

* Alpp(I)] € OUT[S,] and Algy(I)] € IN[S,].
* The asgns precede uses: VIy,1.]] <I, = Sp6< Sq-

An anti dependence if the uses precede the asgns:
VI dy > Ih = Sp0<8,. If 3Dy < Ip A
aI4,1,.11 > I then Sp 6+ Sq: we must respect execution
ordering, but can’t classify dependency. If VI,I,.I; =
I, there are no dependencies within iteration of the
loop, but no loop-carried dependencies: Sj 0= S4.

If VIi,Ip.I — I} = k then k is the dependance dis-
tance. When optimising for cache performance, con-
sider reuse relationship IN[Sy] N IN[Sp]. There is
no dependence, but cache performance is faster for
smaller reuse dist.

4.8 Loop Scheduling: Nested Loops

To show iteration-to-iteration dependencies in a
nested loop we use an iteration space graph:

S00 LN So1 N S02

ol ol ol

S10 LN S11 LN S12

ol ol ol
o o

S20 —> S21 —> S22

In this example, the inner loop is not vectorisable
’since there is a dependence chain linking successive
iterations. Similarly, outer loop is not parallel. This

01dOUT) ; loop nest has two dependence distance vecs, (1,0) by

outer loop and (0, 1) by inner loop.

This loop is interchangable - we can change which
loop is inner and outer - but this does not improve
vectorisability or parallelisability. An interchange is
invalid if 3 dependence distance vec (i,) s.t. i,j > 0.

One transformation we can do is skewing the com-
putation:

o o
Sp0 — So1 — So2

NN O

S11 — S12 — S13

NS

S22 —> S23 —> So4

Now we can interchange for top down lexicographic
traversal (i.e. Sop,S01,S11,S02,S12,522,-+). Now, it-
erations in each column are independent, so the in-
ner loop is vectorisable.

A loop nest can be interchanged if the transposed
dependence dist vecs are lexicographically forward.
Skewing is always valid, exposing parallelism by
aligning parallel iterations with one of the loops.
Skewing can make interchange valid.

5 Runtime Organisation

Primitives require diff mem amounts. Optimal ac-
cess aligns vars to boundaries / PCIE bandwidth.
Records are key-val pairs. Can be different sizes,
but allocated consecutively in mem for easy access
and efficiency.

Arrays are groups of vars of the same type. Al-
loced conescutively, access with base addr & offset.
Objects referenced by ptr, contain ptr to method
lookup table and raw vals for data fields (access
with addr offset). To call a method, pass object
reference as a hidden parameter. For inheritance
and overriding, a new method lookup table is cre-
ated, with a ptr to the parent’s method lookup ta-
ble. This allows for dynamic dispatch (selecting
impl of a polymorphic operation). Dynamic bind-
ing can also be done by copying an obj ref.

Local vars persist for the duration of the method call.
Located in the stack seg of the program addr space.
Access with a frame ptr register (pointing to stack
frame base) and an offset.

Global vars persist for the duration of the program.
Located in the data seg (static) of the program addr
space. Access with base mem addr, no frame ptr re-
quired.

Dynamic vars persist until garbage collection. Lo-
cated in the data set (heap) of the program addr space.

6 Heap Management

* Heap Allocation maps dynamic vars in the heap.

* Heap Deallocation frees inactive mem space.

* Heap Compaction improves mem utilisation and
efficiency while removing fragmentation.

Heap is managed in blocks, containing housekeeping
data (e.g. size, status) and object data (fields, meth-
ods). Object references point to the object data, not
the start of the block. Traditional alloc done with
free list of free blocks in the heap. We do:

1. If a free block of exactly the right size exists, re-
turn it.

2. If a bigger block exists, split into (a) of right size
and (b) of remaining size; return (a).

3. If no block found, request mem from OS.

This is slow. Instead, maintain many free lists for dif-
ferent block sizes, or allocate more space for data that
may grow. We need to consider memory alignment
and the negative impact on caching when we dont have
spacial locality.

6.1 Garbage Collection
GC dynamically deallocs from the heap by one of:

* Reference Counting - each block keeps refcount
in housekeeping data. If copied, incremented. If
deleted, decremented by num of loc vars that ref
them. When the count reaches zero, deallocate
mem block. Cascade to any obj it points to. 1 total
the number of objs pointing into it. Extra code re-
quired for pointer manipulation, and cannot han-
dle cyclic refs.

— When: Immediately on count reaching zero.

— Perf: Low overhead per operation, good for
short-lived objects. Fails with cycles, and over-
head grows with pointer-heavy code.

e Mark & Sweep: Phase 1 marks blocks as live that
are reachable from non-heap references. Phase
2 sweeps through heap, deallocating unmarked
blocks. Slower than refcount, but handles cyclic
refs. Also batches deallocs for efficiency.

— When: Triggered when heap usage crosses
threshold or periodically.

— Perf: Pause-the-world; can cause latency spikes.
Better throughput than refcounting, especially
with cycles.

* Pointer Reversal avoids using extra mem when
traversing blocks. When moving from child to par-
ent, overwrite child pointer back to its parent. Af-
ter finishing, backtrack to the parent and restore
the original pointer. Faster than mark & sweep but
requires more memory.

— When: During mark phase of mark & sweep.

— Perf: Reduces stack space (no recursion), but in-
curs pointer rewrites. Mostly theoretical or used
in constrained systems.

e Two Space: Split heap into from space and fo
space. When from space full, copy all live blocks to
to space. No pointer manipulation, better spacial
locality, not efficient for large heaps.

— When: When from space fills up.

— Perf: Fast allocation (bump pointer), fast collec-
tion (copying). Wastes 50% of heap. Poor fit for
long-lived or large objects.

¢ Generational - divide heap into areas based on
block age. Adaptively perform different GC algo-
rithms for different areas.

— When: Young gen collected frequently, old gen
rarely.

— Perf: Optimized for the weak generational hy-
pothesis (most objects die young). Reduces
pause time, excellent for interactive apps. Com-
plexity in implementation.

