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These may correspond to a single source-code loop
(e.g., multiple exits or re-entry points).

If loop B has header b and lies entirely within loop A
with header a and b € A then B is nested in A. A loop
tree contains each loop as a node.

Since a loop header can have multiple predecessors, in-

sert a new block (pre-header) that has a single edge

to the loop header, is its only predecessor. This is a

save place to hoist invariant code.

4.4 Loop Optimisation: Hoist Safety

Not all loop invariant expressions can be hoisted:

¢ Instruction must dominate all loop exists.

* One def of the var exists in the loop (uniqueness).

* The var is not live out from the pre-header.

Single Static Asgnment (SSA) ensures each var is

asgned once by splitting overlapping live ranges.

This removes the need to check for uniqueness and

liveness. At control flow joins (i.e. after an if-else),

we insert a dummy phi-node a3 = ¢(ay,a3) which

magically picks a; or ap depending on which path is

taken. This is later eliminated during codegen.

4.5 Data Flow Analysis

Each node in a control flow graph stores its using

regs, defs regs and succsessor ids. We define:

e IN[n]: Set of live regs immediately before n: live
after n and not overwritten by #, or it is used by n.

* OUT[n]: Set of live regs immediately after node n:
it is live before any of n’s successors.

OUT[n] = Usesucc(n) IN[s]
IN[n] = uses[n] U (OUT[n] — defs[n])

To find all live ranges, it. until fixed point is reached:

for (Node n : cfg) {
Var[] IN = [];
Var[] OUT = [];
}
do {
for (Node n : cfg) {
Var[] oldIN = IN[n];
Var[] o1dOUT = OUT[n];
IN[n] = uses[n] + (OUT[n] - defs[n]);
OUT[n] =
}
} while (IN[n] !'= oldIN || OUT[n] !=

From the live ranges we derive interference graph,
then colour and update the reg allocation.

4.6 Loop Scheduling

Loop Scheduling Optimisation reorders how loops
are executed to use vector instructions, multiple cores
and improve cache utilisation.

4.7 Loop Scheduling: Dependence Analysis

To use vector instrs, we must verify iterations are
truly parallel - we must find loop carried depen-
dence (whether each iteration depends on the pre-
vious). To detect this:

1. Let IN[S] be the set of mem locs read by S.

2. Let OUT[S] be the set of mem locs written to by S.
Reordering is constrained by 4 types of dependence:

* Data dependence: S10 Sy or OUT[S1] N IN[Sz]. S5
must write something before Sy can read it.

succ(n).map(IN[_]).reduce(_ + _

+ Anti dependence: S16 Sy or IN[S1]NOUT[S,]. S;
must read something before Sy overwrites it.

* Output dependence: 516°S; or OUT[S1]NOUT[S,].
If S1, Sy write to a loc, Sy must write first.

* Control dependence: S16°S;. Sy determines
whether S) should execute.

Consider two iterations I1, I. A dependence occurs

between statements Sp, Sq if Sp in I} references the

same mem loc as S, in I. This may occur if they both

refer to a common array A for some subscript expr ¢.

If Sp = Alpp(I)] and Sy = A, (I)] then a dependence

occurs iff ¢,(I1) = $q(12) for integer I, I in the loop

bounds.

We have a data dependence if:

* Alpp(I)] € OUT[S,] and Algy(I)] € IN[S,].
* The asgns precede uses: VIy,1.]] <I, = Sp6< Sq-

An anti dependence if the uses precede the asgns:
VI dy > Ih = Sp0<8,.  If 3Dy < Ip A
aI4,1,.11 > I then Sp 6+ Sq: we must respect execution
ordering, but can’t classify dependency. If VI,I,.I; =
I, there are no dependencies within iteration of the
loop, but no loop-carried dependencies: Sj 0= S4.

If VIi,Ip.I — I} = k then k is the dependance dis-
tance. When optimising for cache performance, con-
sider reuse relationship IN[Sy] N IN[Sp]. There is
no dependence, but cache performance is faster for
smaller reuse dist.

4.8 Loop Scheduling: Nested Loops

To show iteration-to-iteration dependencies in a
nested loop we use an iteration space graph:

S00 LN So1 N S02

ol ol ol

S10 LN S11 LN S12

ol ol ol
o o

S20 —> S21 —> S22

In this example, the inner loop is not vectorisable
’since there is a dependence chain linking successive
iterations. Similarly, outer loop is not parallel. This

01dOUT) ; loop nest has two dependence distance vecs, (1,0) by

outer loop and (0, 1) by inner loop.

This loop is interchangable - we can change which
loop is inner and outer - but this does not improve
vectorisability or parallelisability. An interchange is
invalid if 3 dependence distance vec (i, ) s.t. i,j > 0.

One transformation we can do is skewing the com-
putation:

o o
Sp0 — So1 — So2

NN O

S11 — S12 — S13

NS

S22 —> S23 —> So4

Now we can interchange for top down lexicographic
traversal (i.e. Sop,S01,S11,S02,S12,522,-+). Now, it-
erations in each column are independent, so the in-
ner loop is vectorisable.

A loop nest can be interchanged if the transposed
dependence dist vecs are lexicographically forward.
Skewing is always valid, exposing parallelism by
aligning parallel iterations with one of the loops.
Skewing can make interchange valid.

5 Runtime Organisation

Primitives require diff mem amounts. Optimal ac-
cess aligns vars to boundaries / PCIE bandwidth.
Records are key-val pairs. Can be different sizes,
but allocated consecutively in mem for easy access
and efficiency.

Arrays are groups of vars of the same type. Al-
loced conescutively, access with base addr & offset.
Objects referenced by ptr, contain ptr to method
lookup table and raw vals for data fields (access
with addr offset). To call a method, pass object
reference as a hidden parameter. For inheritance
and overriding, a new method lookup table is cre-
ated, with a ptr to the parent’s method lookup ta-
ble. This allows for dynamic dispatch (selecting
impl of a polymorphic operation). Dynamic bind-
ing can also be done by copying an obj ref.

Local vars persist for the duration of the method call.
Located in the stack seg of the program addr space.
Access with a frame ptr register (pointing to stack
frame base) and an offset.

Global vars persist for the duration of the program.
Located in the data seg (static) of the program addr
space. Access with base mem addr, no frame ptr re-
quired.

Dynamic vars persist until garbage collection. Lo-
cated in the data set (heap) of the program addr space.

6 Heap Management

* Heap Allocation maps dynamic vars in the heap.

* Heap Deallocation frees inactive mem space.

* Heap Compaction improves mem utilisation and
efficiency while removing fragmentation.

Heap is managed in blocks, containing housekeeping
data (e.g. size, status) and object data (fields, meth-
ods). Object references point to the object data, not
the start of the block. Traditional alloc done with
free list of free blocks in the heap. We do:

1. If a free block of exactly the right size exists, re-
turn it.

2. If a bigger block exists, split into (a) of right size
and (b) of remaining size; return (a).

3. If no block found, request mem from OS.

This is slow. Instead, maintain many free lists for dif-
ferent block sizes, or allocate more space for data that
may grow. We need to consider memory alignment
and the negative impact on caching when we dont have
spacial locality.

6.1 Garbage Collection
GC dynamically deallocs from the heap by one of:

* Reference Counting - each block keeps refcount
in housekeeping data. If copied, incremented. If
deleted, decremented by num of loc vars that ref
them. When the count reaches zero, deallocate
mem block. Cascade to any obj it points to. 1 total
the number of objs pointing into it. Extra code re-
quired for pointer manipulation, and cannot han-
dle cyclic refs.

— When: Immediately on count reaching zero.

— Perf: Low overhead per operation, good for
short-lived objects. Fails with cycles, and over-
head grows with pointer-heavy code.

e Mark & Sweep: Phase 1 marks blocks as live that
are reachable from non-heap references. Phase
2 sweeps through heap, deallocating unmarked
blocks. Slower than refcount, but handles cyclic
refs. Also batches deallocs for efficiency.

— When: Triggered when heap usage crosses
threshold or periodically.

— Perf: Pause-the-world; can cause latency spikes.
Better throughput than refcounting, especially
with cycles.

* Pointer Reversal avoids using extra mem when
traversing blocks. When moving from child to par-
ent, overwrite child pointer back to its parent. Af-
ter finishing, backtrack to the parent and restore
the original pointer. Faster than mark & sweep but
requires more memory.

— When: During mark phase of mark & sweep.

— Perf: Reduces stack space (no recursion), but in-
curs pointer rewrites. Mostly theoretical or used
in constrained systems.

e Two Space: Split heap into from space and fo
space. When from space full, copy all live blocks to
to space. No pointer manipulation, better spacial
locality, not efficient for large heaps.

— When: When from space fills up.

— Perf: Fast allocation (bump pointer), fast collec-
tion (copying). Wastes 50% of heap. Poor fit for
long-lived or large objects.

¢ Generational - divide heap into areas based on
block age. Adaptively perform different GC algo-
rithms for different areas.

— When: Young gen collected frequently, old gen
rarely.

— Perf: Optimized for the weak generational hy-
pothesis (most objects die young). Reduces
pause time, excellent for interactive apps. Com-
plexity in implementation.



