1 Events

An experiment’s outcomes are defined by its
sample space S. An event E C S is a collection
of possible outcomes. Extreme events are ) and
S; elementary events are singleton subsets of S.
For an outcome s* € S, an event E has oc-
curred iff s* € E € S. 0 will never occur and S
will always occur. The event | J; E; will occur if
any event Ey occurs, and (); E; will occur if all
events Ey occur. Events are mutually exclusive
if ¥i,j.E; NEj = 0. An event occurs if any of its
elements occur.

To define a p.f. on S we agree on a collection of
subsets of S to assign probability to, a o-algebra
F. This means VE, Eq,---:

* Non-Empty: Se€ F. _
* Closed complements: E€e F = Ec F.
* Closed countable unions: | J; E; € F.

A probability measure on (S, F)is a mapping
P : F —[0,1], satisfying the following axioms
VE on which it is defined:

« VE€F.O<P(E)<I.

. P(S)=1.

* Countably additive for mut excl. Eq,--- €
F,wehave P(U; E;) = X_; P(

It is easy to derive P(0) = 0, P(E) = 1 — P(E)
and for any E1, Ep: P(E] UE) = P(E1)+ P(Ep) —
P(Eq UEj). Also, a joint event ENF is inde-
pendent iff P(ENF) = P(E)P(F). More generally,

{E1,---} are independent if for any finite sub-
set {Ell' ins .-} where {ij |1 <j<mn}, we have
P( j= lEl )= n;‘zl P(Eij)-

The conditmnal prob of E occuring given F
with P(F) # 0: PENF)

P(EIF) = PE)
If E and F are independent, P(E|F) = P(E). Also,
P(-|F) defines a valid probability measure. E;
and Ej are condtionally independent given F
iff P(Eq N E|F) = P(Eq|F)P(E3|F).
The law of total probability states ¥V partitions
of S: {Fy,-+-}, and events E C S:

P(E) = Z (E|F;)P

Bayes’ Theorem states for anz E,FCS:
P(E|F) =

2 Combinatorics
* Multiplication Rule:

P(F)

For independent

events: P(ANB)=P(A)-P(B)
e Addition Rule: For mutually exclusive
events: P(AUB) = P(A)+ P(B)

n!

¢ Combinations (unordered): (k)_ Farrman

¢ Permutations (ordered): P(n,k) = 7,()'
* Multinomial Coefficient: Number of ways
to divide n objects into r groups of sizes
!
k1,kp,... kg W
e Multinomial Probability: For n indepen-

dent trials with r outcomes: P = W:kr' .
k1 k k.
pll P22 pet
¢ Binomial Probability (2 outcomes):
P(k successes) = (Z)pk(l —p)k
e Complement Rule: P(A) =1-P(A°)
. o (ANB)
¢ Conditional Probability: P(A|B) = TP

¢ Expected Value (Discrete):
P(X =x)

E[X] =

3 Random Variables

A probability space is (S,F,P). A random
variable is a mapping X : S — R. Finite set
of outcomes means sinple, countable means dis-
crete, otherwise continous.

Induced prob.: Px is a new PF on RV X with
¥xeRlet Sy CSbe Sx ={se€S|X(s) <x}, then
Px (X < x) = P(Sx). The image of S under X is
the support of X: supp(X)=X(S)={xeR|3se
S.X(s) = x}. Px(X <x)is defined Vx € supp(X).
The CDF of RV X is Fx(x) = Px(X < x). Fx
is right-continuous, meaning for decreasing seq.
X1, = Xoo, then Fx(x1),+-+ = Fx(xs). A valid

CDF:

¢ Monotonic: Yxq,x2 € Rx; <xp = Fx(x1) <
Fx (x2).

¢ Fx(-oc0)=0and Fx(co) =1.

¢ Fx is right continuous.

The first two imply Vx € R.Fx(x) € [0,1]. For fi-
nite intervals (4,b] C R, we can check Px(a < X <
b) = Fx(b) - Fx(a) by noting E = {X < b} may be
rewritten as E = (—o0,a] U (a, bJ‘
4 Discrete Random Variables
An RV X is discrete iff supp(X) = {x1,---} is
countable. If supp(X)is ordered s.t. x; <xp <--;
then Sx = {s € S| X(s) < X} is constant as we in-
crease x in interval [x;_1,x;). Once x = x;, Sx
grows larger to include outcomes that map to
x;j. Thus, Fx will be a monotonic increaasing
step function with vertical jumps at points in
supp(X). Px(X = x;) = Fx (xj) - Fx (xj-1)-
For DRV X we define PMF p(x) = Px (X = x). If
X can take values in supp(X) then Vx € R.0 <
p(x)<tland Y ;p(xj)=1.
p(xj) = Fx(xi) -

= ip(x])

The expectation of X,]EiX] = Y xp(x) is the
weighted avg of possible values of X, or the
mean of the distribution:
e E =

[g ]]RE%zngrhf(—aE[X]er
. E[g( ) (X)] = E[g(X)] + E[h(X)]
E[X"] is the n-th moment of X. The central
moment is recentered to characterize deviation
from the mean. The variance of X is the second
central moment of X:

Var(X) = E[(X - E[X])?] = E[X?] - E[X]?

The standard deviation is the sqrt of the vari-

Fx(xj-1)

ance. Yab € RVar(aX + b) = a?Var(X). The

skewness of X is a measure of its assymetry,
_ El(x-E[x])%]
sd(x)3

Let S, = Z?:I X; be the sum of n non indepen-

dent RVs of unkown distributions, and X = 57"
be their average:

E[Sy]=¥i_; E[X{]
E[X)= L ¥1 EIxi)
If the vars are indé’pendem'
Var(S, Z1 1 Var( Xi)

2 Z | Var(X;)
If the vars are al<0 1d(’ut1mll; distributed:
E[X]=

Var(X’

Var(X) = %%2(

4.1 Bernoulli Distribution

An experiment with two possible outcomes X ~
Bernoulli(p) with p(x) = p*(1 —p)! ™ forx e
{0,1}. Tt follows that y = p and 2= p(1-p).

4.2 Binomial Distribution

An experiment with n identical Bernoulli trials
X ~Binomial(n,p) with p(x) = (;I )p"‘(l —p)(”’x),

remembering (2) = WLXV Also, p = np, o2 =
1-2
np(l-p)and y; = inp—p)

4.3 Geometric Distribution

Consider a potentially infinite sequence of in-

dependent Bernoulli(p) RVs. Let X be the

first successful trial, then X € Nt and X ~

Geometric( ) with plx) = p(l —p)X’l. Also,
2 _ 2p

F=po Vi-p

4.4 Poisson Distribution

=P and
2 71 =

Poisson is concerned with number of random
events happening per unit space. For A >0, X ~

—Aqx
CCA Alsop=02=2
For non-unit intervals, At re-

Poisson(\) with p(x) =
and y; = %

places A, where A is the rates at which events
occur, and ¢ is a time period.

4.5 Discrete Uniform Distribution

IfX e{1,---,n} then X ~ U({1,---,n}) with p(x) =

n2

+1 -1
and ¢2 b

5. Also, p= 1=

5 Continuous Random Variables

An RV X is continuous if 3fx : R — R such that
Fx(x f fx(u)du. Then fx is the pdf of X,

and PX(a <X <b) _[ fx(x) dx. Hence, Vx €

R.Px (X = x) =0, hence the support of a CRV must
be uncountable to sum to 1. fx(x) = dxFX( X).
The pdf is non-negative, and .[—O:o fx(x)dx=1.

For CRV X, E[g(X)] = foo gl 'fx x) dx and

Var(X) = Ji)(x—E[X] fx(x) dx. The a-quartile
Qx(a) for 0 <a <1is the least number satisfy-
ing P(X < Qx(a)) = a: Qx(a) = F)}l(a). e.g. the
median of X solves Fx(x) = 0.5.

5.1 Continuous Uniform Distribution

If X € (ab) is uniformly distributed, X ~

1
— <x<b
Ulab) with f(x) = P wa and F(x) =
0 x<a )
'Z%z a<x<b. Alsoy-“*banda %

1 x>b
5.2 Exponential Distribution

If CRV X is exponentially distributed with rate
A >0, X ~ exp(A) with f(x) = de™* forx > 0
and F(x) = 1 — ¢ forx > 0. Also p = % and

The memoryless property states Vs, t > 0.P(X >
s+t| X >s)=P(X>t). eg. if we have waited s
time for a random event, this doesn’t affect how
long we have left to wait.

If random events occur with Poisson(A), the
time between them ~ exp(A).

5.3 Normal Distribution
A normal RV X ~

- 1 _(Xf;l)z
fx) = oV2n EXP{ 202

; 2
1 Xy (t=p)
Vo J—we“P{‘sz} .

When p =0 and o =1 we get standard normal

N(p, o?)  with

} and F(x) =

2
z
7 ~ N(0,1) with f(z) = ¢(z) = ‘WC’T and
T
2
t
F(z) = ®(z) = ﬁ IZ e 2 dt. We can stan-
-

dardize with X ~ N(p02) = X < N(0,1).

Hence, Fx(x) = ®(5F), and P(Z > 2) = 1-®(2) =
D(-z).

5.4 Lognormal Distribution

If X ~ N(y,az) and Y = X then Y
has a longnormal dist. with fy(y) =

1 _ (log(p)-p)?
ayV2m BXP{ 202 :

6 Moment Generating Functions

The MGF of CRV X is Mx() = E[e!X] =
JOO e fy(x) dx, or for DRV Y is My(t) =
Ele ﬂ] = Z}le\x(pp Y)€ 'Llp(y)
vides an alternative way to obtain E[X"] =

This pro-

n

L5 My (t)=o-
The characteristic func modifies the mgf
and is defined V RVs: ¢x () = Myl(it) =

[ €™ fx (x) dx and E[X"] = i7" 43 g ()li=o
Since E[[T,Z;] = [l E[Zi], we have
A . n ]
1\4):}171 X]- (t) = I_[j:l N[Xj (t).

7 Random Variable Inequalities
The markov inequality states for any RV X > 0:

Ya> 0. [P(X >a)< %]

The chebyshev inequality states for RV X: Vk >
2

0. [P(lX —-ul>k)< ZT] This can be proven by

applying the markov inequality to Y = (X — y)?
and a = k2.

8 Joint Random Variables

Y(x,p) € R? let $ 2 Sy ={s € S| X(s) SXAY(s) <
y}). Thenwhen Z =(X,Y), F(x,v) = Pz(X <x,V <
v) = P(Syy). The marginal CDF Fx(x) = F(x, c0)
and Fy (y) = F(c0,y).

e Vx,yeRO<F(x,p)<1

e Monotonic: Vx1,x2,91,92 € R[(x] < xp =
F(x1,91) < F(x2,91) A (1 <32 = F(x1,91) <
F(x1,92))]-

* Vx,y € R[F(x,—o0) =
1].

F(—00,9) = 0 A F(00,00) =

Pz(x1 <X <Xo,;1 <Y <y3)=

F(x2,92) = F(x1,v2) = F(x2,91) + F(x1,91)

We can define joint PMF as p(x,y) = Pz(X =
xY = y), and marginal PMF as px(x)
Yy p(xyp) and py(y) = Ly p(xp). Yx,v € R.0
pxy)<land ), ¥ p(xyp)=1.

We can define joint PDF as f(x,v) =

IN 1

2 Loy
vy L 09)
= Lymfx f(u,v) du dv and
= [ feey)

st F(xy)
marginal PDFs as fx(x)
9 [, flxy) dx.

dy and

8.1 Joint Definition On Subsets

Let X,Y be random variables on sample space
S with probability measure P.  For sub-
sets Bx,By C R, the joint probability is:
Pxy(Bx,By)=P({weS:X(w) € By, Y(w) € By})
That is, Pxy(Bx,By) =P(X € Bx,Y € By).

8.2 More Joint Stuff

1. Joint PDF / PMF: - fx y(x,y): probabil-

ity density (or mass) of (X,Y) - Must satisfy:

I fx v (e y)dxdy =1

2. Marginals: - fx(x) = [ fx,y(xp)dy - fr(y) =

| fx,y(xy)dx

3. Independence: - X LY iff fxy(xy) =

fx(Xfy(y

4. Conditional Density: - fx|y( xly) = fo;/

(f fy (v

5. Expectation - EgX,Y)] =

I 8 fx,y (x,v)dxdy

6. Covariance: —Cov(X,Y):]E[XY]—IE[X]IE[Y]

7. Correlation: - px y = %

8. Law of Total Expectation: - E[X] = E[E[X]|Y]]

9. Sum of Independent RVs: - fz(z) =

ffX (x)fy (z—x)dx (convolution)

10. Transformation: - For Z = g(X,Y):
P(ZeB)= ﬂ fx,y (xy)dxdy

(xy)eg~1(B)

8.3 Convolution Theorem
Let X,Y be independent continuous random
variables with PDFs fx(x), fy (v). Then the PDF
of Z = X +Y is the convolution of fx and fy:
(S

fz(2) = (fx*fy)(z =I fx (%) fy (z—x)dx.
e Valid 1ff X and Y are 1ndependent

* P(Z=2)=) P(X=k)P(Y =z-k).
- Only - Same idea for discrete case: P(Z = z) =
Yk P(X =k)P(Y = z-k) - Convolution mixes the
distributions to give the distribution of the sum.
9 Independence & Expectation
X and Y are independent iff Vx,v.[F(x,v)
Fx(0Fy(y)l,  implying  ¥Yxp.[p(xy) =
px(¥py )] and Vx,p[f(xy) = fx(x)fy @)
Hence:

o If g(X,Y) = g1(X) + g2(Y) then E[g(X,Y)] =
E[g1(X)] + E[g2(Y)]. )

o If g(X,Y)=g1(X)g2(Y) and X, Y are indepen-
dent then E[g(X,Y)] = E[g1 (X)]E[g2(Y)].

e Hence, E[XY] = E[X]E[Y]if X,Y are indepen-
dent.

For an RV X, 0% = E[(X - ux)?]. The bivariate
ext of this is the covariance oyy = Cov(X,Y) =
E[(X=px)(Y =puy)] =E[XY]-puxpy. When X,Y
independent, oxy = 0.

Covariance measures how RVs change in re-
lation to one another. The correlation coeff.
pxy = Cor(X,Y) = ngi} When X,Y are inde-
pendent, pxy = 0.

9.1 Multivariate Normal Distribution

A random vec X = (X,---X,) with p =
({1, pp)y is multivariate normal with fy =
exp (— % (x— ;4)TZ’1 (x— ;«)) where ¥

1
217 dety.
is the positive definite covariance matrix of X:

o11 . Oln
=

Onl t Omn

X1,--+, Xy, need not be independent.



10 Conditional Distributions

Fx>Y) (fx(j)y)

A conditional PMF pyy(x | y) = is valid

p(xy)
y(®)
Vpy(y) > 0. Bayes’ Theorem states:

Pyx (| x)px (x)

pxy(x|y)= P

A conditional PDF is fX\Y(x ly) = f(x,yi' Now,

fr®
X,Y are independent iff Yx,3 € R.[fy|x(y | x) =
y)]. Bayes’ theorem:

Ffrix(w1x)fx (x)
frv)

A conditional CDF is Fxy(x |y)=

V) = iz oo Pxy(u | 9) or [

o Sxy () du.
From this, Pla<X <b|Y =y) = Fxy(b|y) -
Fxjy(aly).

The law of total probability states:

fxiy(xly)=

P(X<x|Y=

L px(x) =Xy pxjy (x[2)py @)
2 fx(®) =[5, fay (x19)fy (9) dy
3. Fx(x)= [ Fxjy (x| 9)Fy( y) V.

The conditional expectation of DRV Y is
Eyix[YIX=x]=Y,ypyx(®]x)

The conditional expectation of CRV Y is
Eyix[Y X =x]= [T vfyix (| x) dy.

In either case, expectation is a func of x but not
Y.

The law of total expectation states Ey|x[Y | X]
isan RV s.t. Ey[Y] = Ex[Ey|x[Y | X]] for both
discrete and cts.

11 Markov Chains

Discrete Time Markov Chains (DTMC) sup-
port arbitrary and dependent RVs:

] is the state space of possible states.
* X;>0 €], models the state at time #.

* Realization Xg, X1,--- is sample path.
* Goal: calculate P(X,, = j).

We assume the markov property (next state

depends only on current state): P(X,.; =
lel | Xpn = ler'”rX() = j()) = P(Xpy1 =
jns1 | Xy = ju). We require an initial prob
vector 7y = [Tlo,‘]T where P(Xy = i) = 1p; and

translation prob matrix R = [r;;] where rij =
P(X,41 = j | X;; = i). This gives rise to the fol-
lowing props:

* Each r;; is independent of time .

* Stuck states allowed (e.g. rj; =1).

* R is a non-negative stochastic matrix (rows
sum to 1).

In general, transient analysis shows that:

P(Xps1 =] 1 Xn =1)=r1ij

P(Xy =j1Xo=1)=(R");
P(Xy = j) = (oR");
P(Xy =1i)=Teoj

DTMC stabilize as a limiting distribution:
Too = limy—0o MR or steady state distribu-
tion: 7%, that is invariant under R (i.e. Vn >

0vVje]. [P(Xn =j)= 17120],]). These may ot be
unique. All limiting dists are steady state dists.
A DTMC is irreducable if the directed graph
associated to R is strongly connected: V(i,j) 3
sample path from i to j. A DTMC is periodic
if its states can only be visited at integer mul-
tiples of a fixed period. If it is irreducable and
aperiodic:

¢ There exists unique 7o, = 705,

¢ The elements of 7y, are > 0.

* Tl SOlVes TR = Tty subject to ) ; Tloo; = 1.
Don’t worry about the last case. Simply subssite
st first few are valid.

Without aperiodicity, an irreducable DTMC has
no valid limiting distribution, however 37, s.t.
T3, solves 15, = Rmg, subject to ) ; T(Zol. =1.

12 Estimation Theory

A sample of a population, x = (x1,--+,x,) is
a realisation of RVs X = {X1,---,X,,}. A single
draw follows P(- | 0) where 6 = (61,--,0,,) are
the params to estimate, assuming X; are inde-
pendent & identically distributed (iid). A statistic
T(X) is an RV:

e If approxes 0, T is an estimator of 6.
¢ Realisation #(x) is an estimate of 6.
¢ We study P(T | 6) and its moments.

The bias of T is bias(T) = E[T | 6] - 6. For any

X, the sample mean X is an unbiased estimate
n

for p: E[X] = E[%XI] =

For varlance, we use Bessel’s Correction:

E[$?]=E[-L (X =X)?] =02

T is more efﬁaent than H if V6.[Var(T | 0) <

Var(H | 6)] and 36.[Var(T | ) < Var(H | 0)]. If

VH T is more eff. than H, then T is efficient.

T is consistent if Ve > 0.[P(T(X) - 0] >

€) — 0asn — oo|, or if it is unbiased and

lim,,_, Var(T(X)) = 0.

Sample Variance as a Biased Estimator: Let

X1,X2,...,X, be a sample from a population

with mean p and variance o2. The sample vari-

ance is defined as:

n—-1 —
where X = 1 YL, X; is the sample mean.
12.1 Bias in Sample Variance
We want to show that E[S2] = o'2. Start by ex-
panding 52:
$2= kTl - X2

= 2 (X1 (X - % - n(X - p)?)

Taking the expectation:
E[s?] = 7L (B[L (X; - p)?] - nE[(X - )?])

We know that:

E[(X; - u)?]= o2 for each i
Thus, E[Y, (X; - )2] = no2. Also, E[(X—p)?] =

2
fod .
772 SO:

IE[SZ]:ﬁ(er—n-"7):ﬂcr2

Therefore, E[S?] = shows that the sam-
ple variance is a biased estimator of the popu-
lation variance.

Correction Factor The bias can be corrected by
using the factor -, resulting in the unbiased
estimator:

n-1_2
I

&2: n 52

12.2 Extra Bias Notes
1. Bias of an Estimator: The bias of an estima-
tor O for a parameter 6 is defined as:

Bias(0) = E[0]-0
If Bias(0) = 0, @ is an unbiased estimator. If
Bias(6) = 0, 6 is biased.
2. Unbiased Estimators: For an estimator 6 to
be unbiased:

E[0] =

Common unbiased estimators:

* Sample mean: E[X]| =y
* Sample variance (corrected): E[62] =02
* Sample proportion: E[p] =p

3. Mean Squared Error (MSE): MSE is used to
measure the quality of an estimator and com-
bines both bias and variance:
N . A2
MSE(0) = E[(0 - 0)*] = Var(0) + (Bias(0))

MSE is minimized when the estimator is both
unbiased and has minimal variance.
4. Consistency of Estimators: An estimator 6,
is consistent for 0 if:

A P

0, —60 as n-—ooo
This means that as the sample size increases, 6,
converges in probability to 0.
5. Efficient Estimators: An estimator is effi-
cient if it has the smallest variance among all
unbiased estimators. The Cramer-Rao lower
bound gives the theoretical minimum variance
for an unbiased estimator:

Var(é) >

1
nl(0)

where I(6) is the Fisher information.

6. Bias-Variance Tradeoff: For many estima-

tors (e.g., in regression), theres a tradeoff be-

tween bias and variance. Reducing bias often

increases variance, and vice versa. The optimal

estimator minimizes the MSE.

13 Maximum Likelihood

The likelihood func L(0) = ;.’:lf(xi | 0) is

the product of n pdfs viewed as a func of 0.

We can find 6 that solves % log(L(0)) = 0. If
ddG%log(L(é)) <0, 6 is a maximum likelihood

estimator of 0 - the best estimate for the param-

eter is the one that maximizes the likelihood of

the observed data.

14 Central Limit Theorem

Let X1,---,X,; be iid RVs with mean p and

var o2. We know E[S,] = nyu and Var(S,) =

no2. Thus, E[S, —p] = 0 and Var(S,) = no?.
. Sp—n Sp—n, .

Finally, E[iﬂ] = 0 and Var(T\ﬁ’l) =1

1imy, oo ——= ~ N(0,1). If X; ~ N(u,02), the re-

/\F

sult is exact.

15 Hypothesis Testing
Consider hyp Hy that takes param 6 and value
0. We can test with a fwo sided Hy : 0 = 0¢ or
one sided Hy : 0 > 0. For test statistic T, we
find a distribution under Hy. We define a rejec-
tion region R C R such that P(T e R| Hp) = a,
the significance level. If t € R, we reject Hy.
To test the mean, we define R as the tails of
N: R = (=00,-24/2) U (24/2,00). a2 may be un-
kown, but S? is known. In this case, use t-
distribution with v = n—1 degrees of freedom s.t.
= }S(/iuw(j ~ ty—1. Now, R = (=00, ~t(y_1,1-a/2))V
(t<n—1,1—a/2)r°°)~
The p-value is the probability that a test
statistic is at least as extreme as observed.
Thus for fixed a, we reject Hy if p < a.

Side Tail Var P-Value
1 Low o2 p=D(z)
1 Low | SZ | p=F(t)t
1 Up o2 | p=1-a(z)
1 Up SZ | p=1-F@)t
2 - [0 T p=20-9()
2 - SZ | p=2(1-F(lt))t

1 F is the CDF of the t-distribution.
16 Discrete Event Simulation
A DES generates a random sample path
through a state transition system with time de-
lays at each state. Times between events are RVs

- getting a sample path involves sampling these.
To design a DES:

1. Identify the entities to be modelled.

2. Identify the model states.

3. Identify the event types.

4. For each event specify how it changes curr
state, what new events need to be
celled/scheduled when it fires.

5. Add code to calc measurements when the
sim is running.

6. Add code to output results.

can-

17 Output Analysis

A non-terminating sim seeks to model a sys-
tem at equilibrium ( Vs € States.[ast —
00,ps(t) = ps]). A terminating sim models a
system over a period with no notion of equi-
librium. Initial state is fixed, and distribu-
tion changes after ¢ > 0, which takes some time
to converge. To avoid initialization bias, we
discard initialization transient by resetting mea-
sures after some warm up time, or render long-
enough to make bias insignificant.

DES are stochastic, so outputs are RVs and ob-
servations of a measure 6. If RVs Xi,---, X,

are steady-state observations from a 51m, then
an estimator for 6 is the mean X = Z X;.

By CLT, X~ N(y, 7) As n is large and o2

known:

0
( 1.96 < /(<196) 0.95.

2. pg is unknown, but - by generating many in-

tervals [X—1.96-, X +1.96-2- | using differ-
X v i | using

ent simulations, we conclude with 95% con-
fidence the true p lies within one of the in-
tervals.

3. > 95% Confidence Interval for p.

To find a 100(1 —a)% confidence interval for yu:
X+z1_ q/0-Z \/, When the variance is unknown,

we use §2: X i/<,,,1,1,n/2>7.

Applying to DES: We could run the sim many
times, once we reach a narrow confidence inter-
val, we stop.

Another approach is to run the sim once un-
til approx equilibrium is reached. Then, divide
measurement into batches. If each X; is sample
mean of batch i, this is called the sample means
method. X; may be dependent, so we need co-
variance to construct the confidence interval:

2

Var(X) = & + niz 2ynlyn i1 Cov(X;, X;)

If covs are > 0, then % is an under-estimate of
the var of X and the confidence interval is too
narrow.

18 Distribution Sampling

Sims depend on the ability to sample cts ran-
dom distributions. For RV X, we want a sam-
pling func U(0,1) — supp(X).

18.1 Inverse Transform Method

Suppose X is a cts RV with CDF F(x) = P(X < x).
Then by setting an RV U ~ U(0,1) as U = F(X),
and solving for X (invert), we get a transforma-
tion from U to X. This also works for discrete
RVs.

18.2 Acceptance Rejection Method

If F(X) cannot be inverted, we choose a density
function g(x) that is easy to sample from. Now,
we try to find a constant ¢ s.t. cg(x) = h(x) and
Vx.h(x) 2 f(x). By construction, ¢ = ¢ [, g(x) dx =

(x)
J 1(x) dx. € = MaXyesupp(X )f(;).

1. Let X be a sample from RV whose density
function is g(x).
Generate a U(0,1) sample, U

Let Y = Uh(X).
4. If Y < f(x) (i,e. U< %X;) then accept X,

otherwise reject it and start again.

bl

The probability of accepting X is p = % Num-
ber of required iterations before accepting is
geometrically distributed, so expected iterations
E[I]=c-1.
18.3 Convolution Method
To sample a sum of independent RVs, sample
them individually and then add the results.
18.4 Composition Method
Consider a discrete RV Y with supp(Y
{1,---,n} and ctx RV X with fij(x) = f(x | Y =
Now, we pick an i with probablhty P(Y
then sample from density f;(x
19 Common Formulae
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