

1 Events

An experiment's outcomes are defined by its **sample space** S . An event $E \subseteq S$ is a collection of possible outcomes. **Extreme** events are \emptyset and S ; **elementary** events are singleton subsets of S . For an **outcome** $s^* \in S$, an event E has occurred iff $s^* \in E \subseteq S$. \emptyset will **never occur** and S will **always occur**. The event $\bigcup_i E_i$ will occur if any event E_i occurs, and $\bigcap_i E_i$ will occur if all events E_i occur. Events are **mutually exclusive** if $\forall i, j: E_i \cap E_j = \emptyset$. **An event occurs if any of its elements occur.**

To define a p.f. on S we agree on a collection of subsets of S to assign probability to, a σ -algebra \mathcal{F} . This means $\forall E, E_1, \dots$:

- **Non-Empty:** $S \in \mathcal{F}$.
- **Closed complements:** $E \in \mathcal{F} \Rightarrow \bar{E} \in \mathcal{F}$.
- **Closed countable unions:** $\bigcup_i E_i \in \mathcal{F}$.

A **probability measure** on (S, \mathcal{F}) is a mapping $P: \mathcal{F} \rightarrow [0, 1]$, satisfying the following axioms $\forall E$ on which it is defined:

- $\forall E \in \mathcal{F}. 0 \leq P(E) \leq 1$.
- $P(S) = 1$.
- **Countably additive:** for **mut. excl.** $E_1, \dots \in \mathcal{F}$, we have $P(\bigcup_i E_i) = \sum_i P(E_i)$.

It is easy to derive $P(\emptyset) = 0$, $P(\bar{E}) = 1 - P(E)$ and **for any** E_1, E_2 : $P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$. Also, a **joint event** $E \cap F$ is **independent** iff $P(E \cap F) = P(E)P(F)$. More generally, $\{E_1, \dots\}$ are independent if for any finite subset $\{E_1, E_2, \dots\}$ where $\{i_j \mid 1 \leq j \leq n\}$, we have $P(\bigcap_{j=1}^n E_{i_j}) = \prod_{j=1}^n P(E_{i_j})$.

The **conditional prob** of E occurring given F with $P(F) \neq 0$:

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

If E and F are independent, $P(E|F) = P(E)$. Also, $P(\cdot|F)$ defines a valid probability measure. E_1 and E_2 are **conditionally independent** given F iff $P(E_1 \cap E_2|F) = P(E_1|F)P(E_2|F)$.

The **law of total probability** states \forall partitions of S : $\{F_1, \dots\}$, and events $E \subseteq S$:

$$P(E) = \sum_i P(E|F_i)P(F_i)$$

Bayes' Theorem states for any $E, F \subseteq S$:

$$P(E|F) = \frac{P(F|E)P(E)}{P(F)}$$

2 Combinatorics

- **Multiplication Rule:** For independent events: $P(A \cap B) = P(A) \cdot P(B)$
- **Addition Rule:** For mutually exclusive events: $P(A \cup B) = P(A) + P(B)$
- **Combinations (unordered):** $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- **Permutations (ordered):** $P(n, k) = \frac{n!}{(n-k)!}$
- **Multinomial Coefficient:** Number of ways to divide n objects into r groups of sizes k_1, k_2, \dots, k_r : $\frac{n!}{k_1!k_2! \dots k_r!}$
- **Multinomial Probability:** For n independent trials with r outcomes: $P = \frac{n!}{k_1!k_2! \dots k_r!} \cdot p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$
- **Binomial Probability (2 outcomes):** $P(k \text{ successes}) = \binom{n}{k} p^k (1-p)^{n-k}$
- **Complement Rule:** $P(A) = 1 - P(\bar{A})$
- **Conditional Probability:** $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- **Expected Value (Discrete):** $\mathbb{E}[X] = \sum x \cdot P(X = x)$

3 Random Variables

A **probability space** is (S, \mathcal{F}, P) . A **random variable** is a mapping $X: S \rightarrow \mathbb{R}$. Finite set of outcomes means **simple**, countable means **discrete**, otherwise **continuous**.

Induced prob: P_X is a new PF on RV X with $\forall x \in \mathbb{R}$ let $S_X \subseteq S$ be $S_X = \{s \in S \mid X(s) \leq x\}$, then $P_X(X \leq x) = P(S_X)$. The **image** of S under X is the **support** of X : $\text{supp}(X) = X(S) = \{x \in \mathbb{R} \mid \exists s \in S. X(s) = x\}$. The **CDF** of RV X is $F_X(x) = P_X(X \leq x)$. F_X is **right-continuous**, meaning for decreasing seq. $x_1, \dots \rightarrow x_\infty$, then $F_X(x_1), \dots \rightarrow F_X(x_\infty)$. A valid CDF:

- **Monotonic:** $\forall x_1, x_2 \in \mathbb{R}. x_1 < x_2 \Rightarrow F_X(x_1) \leq F_X(x_2)$.
- $F_X(-\infty) = 0$ and $F_X(\infty) = 1$.
- F_X is **right continuous**.

The first two imply $\forall x \in \mathbb{R}. F_X(x) \in [0, 1]$. For finite intervals $[a, b] \subseteq \mathbb{R}$, we can check $P_X(a < X \leq b) = F_X(b) - F_X(a)$ by noting $E = \{X \leq b\}$ may be rewritten as $E = (-\infty, a] \cup (a, b]$.

4 Discrete Random Variables

An RV X is **discrete** iff $\text{supp}(X) = \{x_1, \dots\}$ is **countable**. If $\text{supp}(X)$ is ordered s.t. $x_1 < x_2 < \dots$; then $S_X = \{s \in S \mid X(s) \leq x\}$ is constant as we increase x in interval $[x_{i-1}, x_i)$. Once $x = x_i$, S_X grows larger to include outcomes that map to x_i . Thus, F_X will be a monotonic increasing step function with vertical jumps at points in $\text{supp}(X)$. $P_X(X = x_i) = F_X(x_i) - F_X(x_{i-1})$.

For DRV X we define **PMF** $p(x) = P_X(X = x)$. If X can take values in $\text{supp}(X)$ then $\forall x \in \mathbb{R}. 0 \leq p(x) \leq 1$ and $\sum_i p(x_i) = 1$.

$$p(x_i) = F_X(x_i) - F_X(x_{i-1})$$

$$F_X(x) = \sum_{j=1}^i p(x_j)$$

The **expectation** of X , $E[X] = \sum_x x p(x)$ is the weighted avg of possible values of X , or the **mean** of the distribution:

- $E[g(X)] = \sum_x g(x)p(x)$
- $\forall a, b \in \mathbb{R}. E[aX + b] = aE[X] + b$
- $E[g(X) + h(X)] = E[g(X)] + E[h(X)]$

$E[X^n]$ is the **n -th moment** of X . The **central moment** is recentered to characterize deviation from the mean. The **variance** of X is the **second central moment** of X :

$$\text{Var}(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

The **standard deviation** is the sqrt of the variance. $\forall a, b \in \mathbb{R}. \text{Var}(aX + b) = a^2 \text{Var}(X)$. The **skewness** of X is a measure of its **assymetry**,

$$\gamma_1 = \frac{E[(X - E[X])^3]}{sd(X)^3}$$

Let $S_n = \sum_{i=1}^n X_i$ be the **sum** of n non independent RVs of unkown distributions, and $\bar{X} = \frac{S_n}{n}$ be their average:

$$E[S_n] = \sum_{i=1}^n E[X_i]$$

$$E[\bar{X}] = \frac{1}{n} \sum_{i=1}^n E[X_i]$$

If the vars are **independent**:

$$\text{Var}(S_n) = \sum_{i=1}^n \text{Var}(X_i)$$

$$\text{Var}(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^n \text{Var}(X_i)$$

If the vars are **also identically distributed**:

$$E[\bar{X}] = \mu_X$$

$$\text{Var}(\bar{X}) = \frac{1}{n} \sigma_X^2$$

4.1 Bernoulli Distribution

An experiment with two possible outcomes $X \sim \text{Bernoulli}(p)$ with $p(x) = p^x(1-p)^{1-x}$ for $x \in \{0, 1\}$. It follows that $\mu = p$ and $\sigma^2 = p(1-p)$.

4.2 Binomial Distribution

An experiment with n identical Bernoulli trials $X \sim \text{Binomial}(n, p)$ with $p(x) = \binom{n}{x} p^x(1-p)^{n-x}$, remembering $\binom{n}{x} = \frac{n!}{(n-x)!}$. Also, $\mu = np$, $\sigma^2 = np(1-p)$ and $\gamma_1 = \frac{2-p}{\sqrt{np(1-p)}}$.

4.3 Geometric Distribution

Consider a potentially infinite sequence of independent Bernoulli(p) RVs. Let X be the first successful trial, then $X \in \mathbb{N}^+$ and $X \sim \text{Geometric}(p)$ with $p(x) = p(1-p)^{x-1}$. Also, $\mu = \frac{1}{p}$, $\sigma^2 = \frac{1-p}{p^2}$ and $\gamma_1 = \frac{2-p}{\sqrt{1-p}}$.

4.4 Poisson Distribution

Poisson is concerned with number of random events happening per **unit** space. For $\lambda > 0$, $X \sim \text{Poisson}(\lambda)$ with $p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$. Also $\mu = \sigma^2 = \lambda$ and $\gamma_1 = \frac{1}{\sqrt{\lambda}}$. For non-unit intervals, λt replaces λ , where λ is the rates at which events occur, and t is a time period.

4.5 Discrete Uniform Distribution

If $X \in \{1, \dots, n\}$ then $X \sim \text{U}(\{1, \dots, n\})$ with $p(x) = \frac{1}{n}$. Also, $\mu = \frac{n+1}{2}$ and $\sigma^2 = \frac{n^2-1}{12}$.

5 Continuous Random Variables

An RV X is **continuous** if $\exists f_X: \mathbb{R} \rightarrow \mathbb{R}$ such that $F_X(x) = \int_{-\infty}^x f_X(u) du$. Then f_X is the **pdf** of X , and $P_X(a < X \leq b) = \int_a^b f_X(x) dx$. Hence, $\forall x \in \mathbb{R}. P_X(X = x) = 0$, hence the **support of a CRV must be uncountable** to sum to 1. $f_X(x) = \frac{d}{dx} F_X(x)$.

The pdf is **non-negative**, and $\int_{-\infty}^{\infty} f_X(x) dx = 1$. For CRV X , $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$ and $\text{Var}(X) = \int_{-\infty}^{\infty} (x - E[X])^2 f_X(x) dx$. The **α -quartile** $Q_X(\alpha)$ for $0 \leq \alpha \leq 1$ is the least number satisfying $P(X \leq Q_X(\alpha)) = \alpha$: $Q_X(\alpha) = F_X^{-1}(\alpha)$. e.g. the median of X solves $F_X(x) = 0.5$.

5.1 Continuous Uniform Distribution

If $X \in (a, b)$ is uniformly distributed, $X \sim \text{U}(a, b)$ with $f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{o.w.} \end{cases}$ and $F(x) = \begin{cases} 0 & x \leq a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x \geq b \end{cases}$. Also $\mu = \frac{a+b}{2}$ and $\sigma^2 = \frac{(b-a)^2}{12}$.

5.2 Exponential Distribution

If CRV X is exponentially distributed with rate $\lambda > 0$, $X \sim \text{exp}(\lambda)$ with $f(x) = \lambda e^{-\lambda x}$ for $x \geq 0$ and $F(x) = 1 - e^{-\lambda x}$ for $x \geq 0$. Also $\mu = \frac{1}{\lambda}$ and $\sigma^2 = \frac{1}{\lambda^2}$.

The **memoryless property** states $\forall s, t \geq 0. P(X > s + t \mid X > s) = P(X > t)$. e.g. if we have waited s time for a random event, this doesn't affect how long we have left to wait.

If random events occur with $\text{Poisson}(\lambda)$, the time between them $\sim \text{exp}(\lambda)$.

5.3 Normal Distribution

A normal RV $X \sim N(\mu, \sigma^2)$ with $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$ and $F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x \exp\left\{-\frac{(t-\mu)^2}{2\sigma^2}\right\} dt$.

When $\mu = 0$ and $\sigma = 1$ we get **standard normal** $Z \sim N(0, 1)$ with $f(z) = \phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$ and

$F(z) = \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-\frac{t^2}{2}} dt$. We can **standardize** with $X \sim N(\mu, \sigma^2) \Rightarrow \frac{X-\mu}{\sigma} \sim N(0, 1)$.

Hence, $F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$, and $P(Z > z) = 1 - \Phi(z) = \Phi(-z)$.

5.4 Lognormal Distribution

If $X \sim N(\mu, \sigma^2)$ and $Y = e^X$ then Y has a **lognormal dist.** with $f_Y(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(\log(y)-\mu)^2}{2\sigma^2}\right\}$.

6 Moment Generating Functions

The MGF of CRV X is $M_X(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$, or for DRV Y is $M_Y(t) = E[e^{tY}] = \sum_{y \in \text{supp}(Y)} e^{ty} p(y)$. This provides an alternative way to obtain $E[X^n] = \frac{d^n}{dt^n} M_X(t)|_{t=0}$.

The **characteristic func** modifies the mgf and is defined \forall RVs: $\phi_X(t) = M_X(it) = \int_{-\infty}^{\infty} e^{itx} f_X(x) dx$ and $E[X^n] = i^{-n} \frac{d^n}{dt^n} \phi_X(t)|_{t=0}$.

Since $E[\prod_{i=1}^n Z_i] = \prod_{i=1}^n E[Z_i]$, we have $M_{\sum_{j=1}^n X_j}(t) = \prod_{j=1}^n M_{X_j}(t)$.

7 Random Variable Inequalities

The **markov inequality** states for any RV $X \geq 0$: $\forall a > 0. P(X \geq a) \leq \frac{E[X]}{a}$.

The **chebyshev inequality** states for RV X : $\forall k > 0. P(|X - \mu| \geq k) \leq \frac{\sigma^2}{k^2}$. This can be proven by applying the markov inequality to $Y = (X - \mu)^2$ and $a = k^2$.

8 Joint Random Variables

$\forall x, y \in \mathbb{R}$ let $S \supseteq S_{xy} = \{s \in S \mid X(s) \leq x \wedge Y(s) \leq y\}$. Then when $Z = (X, Y)$, $F(x, y) = P(Z \leq x, Y \leq y) = P(S_{xy})$. The **marginal CDF** $F_X(x) = F(x, \infty)$ and $F_Y(y) = F(\infty, y)$.

- $\forall x, y \in \mathbb{R}. 0 \leq F(x, y) \leq 1$
- **Monotonic:** $\forall x_1, x_2, y_1, y_2 \in \mathbb{R}. (x_1 < x_2 \Rightarrow F(x_1, y_1) \leq F(x_2, y_1) \wedge (y_1 < y_2 \Rightarrow F(x_1, y_1) \leq F(x_1, y_2)))$.
- $\forall x, y \in \mathbb{R}. F(x, -\infty) = F(-\infty, y) = 0 \wedge F(\infty, \infty) = 1$.

$$P_Z(x_1 < X \leq x_2, y_1 < Y \leq y_2) =$$

$$F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1)$$

We can define **joint PMF** as $p(x, y) = P_Z(X = x, Y = y)$, and **marginal PMF** as $p_X(x) = \sum_y p(x, y)$ and $p_Y(y) = \sum_x p(x, y)$. $\forall x, y \in \mathbb{R}. 0 \leq p(x, y) \leq 1$ and $\sum_x \sum_y p(x, y) = 1$.

We can define **joint PDF** as $f(x, y) = \frac{\partial^2}{\partial x \partial y} F(x, y)$ s.t. $F(x, y) = \int_y^{\infty} \int_{-\infty}^x f(u, v) du dv$ and marginal PDFs as $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$ and $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$.

8.1 Joint Definition On Subsets

Let X, Y be random variables on sample space S with probability measure P . For subsets $B_X, B_Y \subseteq \mathbb{R}$, the joint probability is: $P_{XY}(B_X, B_Y) = P(\{w \in S : X(w) \in B_X, Y(w) \in B_Y\})$. That is, $P_{XY}(B_X, B_Y) = P(X \in B_X, Y \in B_Y)$.

8.2 More Joint Stuff

- 1. **Joint PDF / PMF:** - $f_{X,Y}(x, y)$: probability density (or mass) of (X, Y) - Must satisfy: $\iint f_{X,Y}(x, y) dx dy = 1$
- 2. **Marginals:** - $f_X(x) = \int f_{X,Y}(x, y) dy - f_Y(y) = \int f_{X,Y}(x, y) dx$
- 3. **Independence:** - $X \perp Y$ iff $f_{X,Y}(x, y) = f_X(x)f_Y(y)$
- 4. **Conditional Density:** - $f_{X|Y}(x|y) = \frac{f_{X,Y}(x|y)}{f_Y(y)}$ (if $f_Y(y) > 0$)
- 5. **Expectation:** - $\mathbb{E}[g(X, Y)] = \iint g(x, y) f_{X,Y}(x, y) dx dy$
- 6. **Covariance:** - $\text{Cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$
- 7. **Correlation:** - $\rho_{X,Y} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$
- 8. **Law of Total Expectation:** - $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]]$
- 9. **Sum of Independent RVs:** - $f_{Z|X}(z) = f_X(x)f_Y(z-x)$ (convolution)
- 10. **Transformation:** - For $Z = g(X, Y)$:

$$P(Z \in B) = \iint_{(x, y) \in g^{-1}(B)} f_{X,Y}(x, y) dx dy$$

8.3 Convolution Theorem

Let X, Y be independent continuous random variables with PDFs $f_X(x), f_Y(y)$. Then the PDF of $Z = X + Y$ is the **convolution** of f_X and f_Y : $f_Z(z) = (f_X * f_Y)(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$.

- Valid iff X and Y are **independent**.
- $P(Z = z) = \sum_k P(X = k)P(Y = z-k)$.

- Only - Same idea for discrete case: $P(Z = z) = \sum_k P(X = k)P(Y = z-k)$. Convolution mixes the distributions to give the distribution of the sum.

9 Independence & Expectation

X and Y are **independent** iff $\forall x, y. f_{X,Y}(x, y) = f_X(x)f_Y(y)$, implying $\forall x, y. p(x|y) = p_X(x)p_Y(y)$ and $\forall x, y. f(x|y) = f_X(x)f_Y(y)$. Hence:

- If $g(X, Y) = g_1(X) + g_2(Y)$ then $E[g(X, Y)] = E[g_1(X)] + E[g_2(Y)]$.
- If $g(X, Y) = g_1(X)g_2(Y)$ and X, Y are **independent** then $E[g(X, Y)] = E[g_1(X)]E[g_2(Y)]$.
- Hence: $E[XY] = E[X]E[Y]$ if X, Y are independent.

For an RV X , $\sigma_X^2 = E[(X - \mu_X)^2]$. The bivariate ext of this is the **covariance** $\sigma_{XY} = \text{Cov}(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$. When X, Y independent, $\sigma_{XY} = 0$.

Covariance measures how RVs change in relation to one another. The **correlation coeff.** $\rho_{XY} = \text{Cor}(X, Y) = \frac{\sigma_{XY}}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$. When X, Y are independent, $\rho_{XY} = 0$.

9.1 Multivariate Normal Distribution

A random vec $X = \langle X_1, \dots, X_n \rangle$ with $\mu = \langle \mu_1, \dots, \mu_n \rangle$ is **multivariate normal** with $f_X = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right)$ where Σ is the **positive definite covariance matrix** of X :

$$\Sigma = \begin{bmatrix} \sigma_{11} & \dots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \dots & \sigma_{nn} \end{bmatrix}$$

10 Conditional Distributions

$$f(x|X > Y) = \frac{f(x)}{P(X > Y)}$$

A **conditional PMF** $p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}$ is valid $\forall p_Y(y) > 0$. **Bayes' Theorem** states:

$$p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x)p_X(x)}{p_Y(y)}$$

A **conditional PDF** is $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$. Now, X, Y are independent iff $\forall x, y \in \mathbb{R}, f_{Y|X}(y|x) = f_Y(y)$. **Bayes' theorem:**

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}$$

A **conditional CDF** is $F_{X|Y}(x|y) = P(X \leq x | Y = y) = \sum_{u=-\infty}^x P_{X|Y}(u|y)$ or $\int_{-\infty}^x f_{X|Y}(u|y) du$. From this, $P(a < X \leq b | Y = y) = F_{X|Y}(b|y) - F_{X|Y}(a|y)$.

The **law of total probability** states:

- $p_X(x) = \sum_y p_{X|Y}(x|y)p_Y(y)$.
- $f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x|y)f_Y(y) dy$.
- $F_X(x) = \int_{-\infty}^x F_{X|Y}(x|y)F_Y(y) dy$.

The **conditional expectation** of **DRV** Y is $E_{Y|X}[Y | X = x] = \sum_y y p_{Y|X}(y|x)$.

The **conditional expectation** of **CRV** Y is $E_{Y|X}[Y | X = x] = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy$.

In either case, expectation is a func of x but not Y .

The **law of total expectation** states $E_{Y|X}[Y | X]$ is an RV s.t. $E_Y[Y] = E_X[E_{Y|X}[Y | X]]$ for both discrete and cts.

11 Markov Chains

Discrete Time Markov Chains (DTMC) support arbitrary and dependent RVs:

- J is the **state space** of possible states.
- $X_{n \geq 0} \in J$, models the state at time n .
- Realization X_0, X_1, \dots is **sample path**.
- Goal: calculate $P(X_n = j)$.

We assume the **markov property** (next state depends only on current state): $P(X_{n+1} = j_{n+1} | X_n = j_n, \dots, X_0 = j_0) = P(X_{n+1} = j_{n+1} | X_n = j_n)$. We require an **initial prob vector** $\pi_0 = [\pi_{0j}]^T$ where $P(X_0 = i) = \pi_{0i}$ and **transition prob matrix** $R = [r_{ij}]$ where $r_{ij} = P(X_{n+1} = j | X_n = i)$. This gives rise to the following props:

- Each r_{ij} is independent of time n .
- Stuck states allowed (e.g. $r_{ii} = 1$).
- R is a non-negative **stochastic** matrix (rows sum to 1).

In general, **transient analysis** shows that:

$$P(X_{n+1} = j | X_n = i) = r_{ij}$$

$$P(X_n = j | X_0 = i) = (R^n)_{ij}$$

$$P(X_n = j) = (\pi_0 R^n)_j$$

$$P(X_n = i) = \pi_{\infty i}$$

DTMC stabilize as a **limiting distribution**: $\pi_{\infty} = \lim_{n \rightarrow \infty} \pi_0 R^n$ or **steady state distribution**: π_{∞} that is invariant under R (i.e. $\forall n \geq$

$0 \forall j \in J, P(X_n = j) = 1 \pi_{\infty j}^*$). These may **not** be unique. All limiting dists are steady state dists. A DTMC is **irreducible** if the directed graph associated to R is **strongly connected**: $\forall (i, j) \exists$ sample path from i to j . A DTMC is **periodic** if its states can only be visited at integer multiples of a fixed period. If it is **irreducible and aperiodic**:

- There exists unique $\pi_{\infty} = \pi^*$.
- The elements of π_{∞} are > 0 .
- π_{∞} solves $\pi_{\infty} R = \pi_{\infty}$ subject to $\sum_i \pi_{\infty i} = 1$. *Don't worry about the last case. Simply substitute st first few are valid.*

Without aperiodicity, an irreducible DTMC has no valid limiting distribution, however $\exists \pi_{\infty}^*$ s.t. π_{∞}^* solves $\pi_{\infty}^* R = \pi_{\infty}^*$ subject to $\sum_i \pi_{\infty}^* i = 1$.

12 Estimation Theory

A **sample** of a **population**, $x = \langle x_1, \dots, x_n \rangle$ is a realisation of RVs $X = \{X_1, \dots, X_n\}$. A single draw follows $P(\cdot | \theta)$ where $\theta = \{\theta_1, \dots, \theta_n\}$ are the **params** to estimate, assuming X_i are **independent & identically distributed (iid)**. A **statistic** $T(X)$ is an RV:

- If approxes θ , T is an **estimator** of θ .
- Realisation $t(x)$ is an **estimate** of θ .
- We study $P(T | \theta)$ and its moments.

The **bias** of T is $\text{bias}(T) = E[T | \theta] - \theta$. For any X , the sample mean \bar{X} is an unbiased estimate for μ : $E[\bar{X}] = E\left[\frac{1}{n} \sum_{i=1}^n X_i\right] = \mu$.

For variance, we use **Bessel's Correction**: $E[S^2] = E\left[\frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2\right] = \sigma^2$.

T is **more efficient** than H if $\forall \theta, [\text{Var}(T | \theta) \leq \text{Var}(H | \theta)]$ and $\exists \theta, [\text{Var}(T | \theta) < \text{Var}(H | \theta)]$. If VH is more eff. than H , then T is **efficient**.

T is **consistent** if $\forall \epsilon > 0, P(|T(X) - \theta| > \epsilon) \rightarrow 0$ as $n \rightarrow \infty$, or if it is unbiased and $\lim_{n \rightarrow \infty} \text{Var}(T(X)) = 0$.

Sample Variance as a Biased Estimator: Let X_1, X_2, \dots, X_n be a sample from a population with mean μ and variance σ^2 . The sample variance is defined as:

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

where $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ is the sample mean.

12.1 Bias in Sample Variance

We want to show that $E[S^2] \neq \sigma^2$. Start by expanding S^2 :

$$\begin{aligned} S^2 &= \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 \\ &= \frac{1}{n-1} \left(\sum_{i=1}^n (X_i - \mu)^2 - n(\bar{X} - \mu)^2 \right) \end{aligned}$$

Taking the expectation:

$$\mathbb{E}[S^2] = \frac{1}{n-1} \left(\mathbb{E}\left[\sum_{i=1}^n (X_i - \mu)^2\right] - n\mathbb{E}[(\bar{X} - \mu)^2] \right)$$

We know that:

$$\mathbb{E}[(X_i - \mu)^2] = \sigma^2 \quad \text{for each } i$$

Thus, $\mathbb{E}\left[\sum_{i=1}^n (X_i - \mu)^2\right] = n\sigma^2$. Also, $\mathbb{E}[(\bar{X} - \mu)^2] = \frac{\sigma^2}{n}$, so:

$$\mathbb{E}[S^2] = \frac{1}{n-1} \left(n\sigma^2 - n \cdot \frac{\sigma^2}{n} \right) = \frac{n-1}{n} \sigma^2$$

Therefore, $\mathbb{E}[S^2] = \frac{n-1}{n} \sigma^2$ shows that the sample variance is a biased estimator of the population variance.

Correction Factor: The bias can be corrected by using the factor $\frac{n}{n-1}$, resulting in the unbiased estimator:

$$\hat{S}^2 = \frac{n}{n-1} S^2$$

12.2 Extra Bias Notes

1. Bias of an Estimator: The bias of an estimator $\hat{\theta}$ for a parameter θ is defined as:

$$\text{Bias}(\hat{\theta}) = \mathbb{E}[\hat{\theta}] - \theta$$

If $\text{Bias}(\hat{\theta}) = 0$, $\hat{\theta}$ is an **unbiased estimator**. If $\text{Bias}(\hat{\theta}) \neq 0$, $\hat{\theta}$ is **biased**.

2. Unbiased Estimators: For an estimator $\hat{\theta}$ to be unbiased:

$$\mathbb{E}[\hat{\theta}] = \theta$$

Common unbiased estimators:

- Sample mean: $\mathbb{E}[\bar{X}] = \mu$
- Sample variance (corrected): $\mathbb{E}[\hat{S}^2] = \sigma^2$
- Sample proportion: $\mathbb{E}[\hat{p}] = p$

3. Mean Squared Error (MSE): MSE is used to measure the quality of an estimator and combines both bias and variance:

$$\text{MSE}(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta)^2] = \text{Var}(\hat{\theta}) + (\text{Bias}(\hat{\theta}))^2$$

MSE is minimized when the estimator is both unbiased and has minimal variance.

4. Consistency of Estimators: An estimator $\hat{\theta}_n$ is **consistent** for θ if:

$$\hat{\theta}_n \xrightarrow{P} \theta \quad \text{as } n \rightarrow \infty$$

This means that as the sample size increases, $\hat{\theta}_n$ converges in probability to θ .

5. Efficient Estimators: An estimator is **efficient** if it has the smallest variance among all unbiased estimators. The Cramer-Rao lower bound gives the theoretical minimum variance for an unbiased estimator:

$$\text{Var}(\hat{\theta}) \geq \frac{1}{nI(\theta)}$$

where $I(\theta)$ is the Fisher information.

6. Bias-Variance Tradeoff: For many estimators (e.g., in regression), there's a tradeoff between bias and variance. Reducing bias often increases variance, and vice versa. The optimal estimator minimizes the MSE.

13 Maximum Likelihood

The **likelihood func** $L(\theta) = \prod_{i=1}^n f(x_i | \theta)$ is the product of n pdfs viewed as a func of θ . We can find $\hat{\theta}$ that solves $\frac{d}{d\theta} \log(L(\hat{\theta})) = 0$. If $\frac{d^2}{d\theta^2} \log(L(\hat{\theta})) < 0$, $\hat{\theta}$ is a **maximum likelihood estimator** of θ - the best estimate for the parameter is the one that maximizes the likelihood of the observed data.

14 Central Limit Theorem

Let X_1, \dots, X_n be iid RVs with mean μ and $\text{var } \sigma^2$. We know $E[S_n] = n\mu$ and $\text{Var}(S_n) = n\sigma^2$. Thus, $E[S_n - \mu] = 0$ and $\text{Var}(S_n) = n\sigma^2$. Finally, $E\left[\frac{S_n - n\mu}{\sigma\sqrt{n}}\right] = 0$ and $\text{Var}\left(\frac{S_n - n\mu}{\sigma\sqrt{n}}\right) = 1$: $\lim_{n \rightarrow \infty} \frac{S_n - \mu}{\sigma\sqrt{n}} \sim \mathcal{N}(0, 1)$. If $X_i \sim N(\mu, \sigma^2)$, the result is exact.

15 Hypothesis Testing

Consider hyp H_0 that takes param θ and value θ_0 . We can test with a **two sided** $H_1 : \theta \neq \theta_0$ or **one sided** $H_1 : \theta > \theta_0$. For **test statistic** T , we find a distribution under H_0 . We define a **rejection region** $R \subseteq \mathbb{R}$ such that $P(T \in R | H_0) = \alpha$, the **significance level**. If $t \in R$, we reject H_0 .

To test the mean, we define R as the tails of N : $R = (-\infty, -z_{\alpha/2}) \cup (z_{\alpha/2}, \infty)$. σ^2 may be unknown, but S^2 is known. In this case, use **t-distribution** with $v = n-1$ **degrees of freedom** s.t.

$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$. Now, $R = (-\infty, -t_{n-1, 1-\alpha/2}) \cup (t_{n-1, 1-\alpha/2}, \infty)$.

The **p-value** is the probability that a test statistic is at least as extreme as observed. Thus for fixed α , we reject H_0 if $p \leq \alpha$.

Side	Tail	Var	P-Value
1	Low	σ^2	$p = \Phi(z)$
1	Low	S^2	$p = F(t) \uparrow$
1	Up	σ^2	$p = 1 - \Phi(z)$
1	Up	S^2	$p = 1 - F(t) \uparrow$
2	-	σ^2	$p = 2(1 - \Phi(z)) \uparrow$
2	-	S^2	$p = 2(1 - F(t)) \uparrow$

\uparrow F is the CDF of the t-distribution.

16 Discrete Event Simulation

A **DES** generates a random **sample path** through a state transition system with time delays at each state. Times between events are RVs - getting a sample path involves sampling these. To design a DES:

- Identify the **entities** to be modelled.
- Identify the **model states**.
- Identify the **event types**.
- For each **event** specify **how it changes curr state, what new events need to be cancelled/scheduled when it fires**.
- Add code to calc **measurements** when the sim is running.
- Add code to **output results**.

17 Output Analysis

A **non-terminating sim** seeks to model a system at **equilibrium** ($\forall s \in \text{States}, [as \rightarrow \infty, p_s(t) \rightarrow p_s]$). A **terminating sim** models a system over a period with no notion of equilibrium. **Initial state** is fixed, and distribution changes after $t \gg 0$, which takes some time to converge. To avoid **initialization bias**, we discard **initialization transient** by resetting measures after some warm up time, or render long enough to make bias insignificant.

DES are **stochastic**, so outputs are RVs and observations of a measure θ . If RVs X_1, \dots, X_n are steady-state observations from a sim, then an estimator for θ is the mean $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$. By CLT, $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$. As n is large and σ^2 is known:

- $P\left(-1.96 \leq \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq 1.96\right) \approx 0.95$.
- μ_0 is unknown, but by generating many intervals $[\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}]$ using different simulations, we conclude with 95% confidence the true μ lies within one of the intervals.
- > 95% Confidence Interval** for μ .

To find a $100(1 - \alpha)\%$ confidence interval for μ : $\bar{X} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$. When the variance is unknown, we use S^2 : $\bar{X} \pm t_{(n-1, 1-\alpha/2)} \frac{S}{\sqrt{n}}$.

Applying to DES: We could run the sim many times, once we reach a narrow confidence interval, we stop. Another approach is to run the sim until approx equilibrium is reached. Then, divide measurement into **batches**. If each X_i is sample mean method. X_i may be dependent, so we need **co-variance** to construct the confidence interval:

$$\text{Var}(\bar{X}) = \frac{\sigma^2}{n} + \frac{1}{n^2} \left[2 \sum_{i=1}^{n-1} \sum_{j=i+1}^n \text{Cov}(X_i, X_j) \right]$$

If covs are > 0 , then $\frac{S^2}{n}$ is an **under-estimate** of the var of \bar{X} and the confidence interval is too narrow.

18 Distribution Sampling

Sims depend on the ability to **sample** cts random distributions. For RV X , we want a **sampling func** $U(0,1) \rightarrow \text{supp}(X)$.

18.1 Inverse Transform Method

If $F(X)$ cannot be inverted, we choose a density function $g(x)$ that is easy to sample from. Now, we try to find a constant c s.t. $cg(x) = h(x)$ and $\forall x, h(x) \geq f(x)$. By construction, $c = \int_X g(x) dx = \int_X h(x) dx$. $c = \max_{x \in \text{supp}(X)} \frac{f(x)}{g(x)}$.

- Let X be a sample from RV whose density function is $g(x)$.
- Generate a $U(0,1)$ sample, U .
- Let $Y = Uh(X)$.
- If $Y \leq f(x)$ (i.e. $U \leq \frac{f(x)}{h(x)}$), then **accept** X , otherwise **reject** it and start again.

18.3 Convolution Method

To sample a **sum of independent RVs**, sample them individually and then add the results. Consider a discrete RV Y with $\text{supp}(Y) = \{1, \dots, n\}$ and cts RV X with $f_X(x) = f(x | Y = i)$. Now, we pick an i with probability $P(Y = i)$, then sample from density $f_i(x)$.

19 Common Formulae

- $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
- $\int x^{-1} dx = \ln x + c$
- $\frac{d}{dx} \left(f(x)g(x) \right) = f(x) \frac{d}{dx} g(x) + \frac{d}{dx} f(x)g(x)$
- $\int u dv = uv - \int v du$
- $\frac{d}{dx} e^{nx} = ne^{nx}$
- $\int e^{nx} dx = \frac{1}{n} e^{nx} + C \quad (\text{for } n \neq 0)$
- $\lim_{x \rightarrow c} \frac{f(x)}{g(x)} = \lim_{x \rightarrow c} \frac{f'(x)}{g'(x)}$
- $\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$
- $\frac{d}{dx} u = u \frac{dv}{dx} + v \frac{du}{dx}$
- $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$