
1 Events
An experiment’s outcomes are defined by its
sample space S . An event E ⊆ S is a collection
of possible outcomes. Extreme events are ∅ and
S ; elementary events are singleton subsets of S .
For an outcome s∗ ∈ S , an event E has oc-
curred iff s∗ ∈ E ⊆ S . ∅ will never occur and S
will always occur. The event

∪
i Ei will occur if

any event Ex occurs, and
∩

i Ei will occur if all
events Ex occur. Events aremutually exclusive
if ∀i, j.Ei ∩ Ej = ∅. An event occurs if any of its
elements occur.
To define a p.f. on S we agree on a collection of
subsets of S to assign probability to, a σ-algebra
F . This means ∀E,E1 , · · · :

• Non-Empty: S ∈ F .
• Closed complements: E ∈ F ⇒E ∈ F .
• Closed countable unions:

∪
i Ei ∈ F .

A probability measure on ⟨S,F ⟩ is a mapping
P : F → [0,1], satisfying the following axioms
∀E on which it is defined:

• ∀E ∈ F .0 ≤ P(E) ≤ 1.
• P(S) = 1.
• Countably additive: for mut. excl. E1 , · · · ∈
F , we have P(

∪
i Ei ) =

∑
i P(Ei ).

It is easy to derive P(∅) = 0, P(E) = 1 − P(E)
and for any E1, E2: P(E1 ∪ E2) = P(E1) + P(E2)−
P(E1 ∪ E2). Also, a joint event E ∩ F is inde-
pendent iff P(E∩F) = P(E)P(F). More generally,
{E1 , · · · } are independent if for any finite sub-
set {Ei1 ,Ei2 , · · · } where {ij | 1 ≤ j ≤ n}, we have
P(
∩n

j=1 Eij ) =
∏n
j=1 P(Eij ).

The conditional prob of E occuring given F
with P(F) , 0:

P(E|F) = P(E ∩F)
P(F)

If E and F are independent, P(E|F) = P(E). Also,
P(·|F) defines a valid probability measure. E1
and E2 are condtionally independent given F
iff P(E1 ∩E2 |F) = P(E1 |F)P(E2 |F).
The law of total probability states ∀ partitions
of S : {F1 , · · · }, and events E ⊆ S :

P(E) =
∑
i

P(E|Fi )P(Fi )

Bayes’ Theorem states for any E,F ⊆ S :

P(E|F) = P(F |E)P(E)
P(F)

2 Combinatorics
• Multiplication Rule: For independent

events: P(A∩B) = P(A) ·P(B)
• Addition Rule: For mutually exclusive

events: P(A∪B) = P(A) +P(B)
• Combinations (unordered):

(n
k
)
= n!

k!(n−k)!

• Permutations (ordered): P(n,k) =
n!

(n− k)!
• Multinomial Coefficient: Number of ways

to divide n objects into r groups of sizes
k1 , k2 , . . . , kr : n!

k1!k2!...kr !
• Multinomial Probability: For n indepen-

dent trials with r outcomes: P = n!
k1!k2!...kr !

·

p
k1
1 p

k2
2 . . .p

kr
r

• Binomial Probability (2 outcomes):
P(k successes) =

(n
k
)
pk (1− p)n−k

• Complement Rule: P(A) = 1−P(Ac )

• Conditional Probability: P(A | B) = P(A∩B)
P(B)

• Expected Value (Discrete): E[X] =
∑
x ·

P(X = x)

3 Random Variables
A probability space is ⟨S,F ,P⟩. A random
variable is a mapping X : S → R. Finite set
of outcomesmeans simple, countable means dis-
crete, otherwise continuous.
Induced prob.: PX is a new PF on RV X with
∀x ∈ R let SX ⊆ S be SX = {s ∈ S | X(s) ≤ x}, then
PX (X ≤ x) ≡ P(SX ). The image of S under X is
the support of X: supp(X) = X(S) = {x ∈ R | ∃s ∈
S.X(s) = x}. PX (X ≤ x) is defined ∀x ∈ supp(X).
The CDF of RV X is FX (x) = PX (X ≤ x). FX
is right-continuous, meaning for decreasing seq.
x1 , · · · → x∞, then FX (x1), · · · → FX (x∞). A valid
CDF:

• Monotonic: ∀x1 ,x2 ∈ R.x1 < x2 ⇒ FX (x1) ≤
FX (x2).

• FX (−∞) = 0 and FX (∞) = 1.
• FX is right continuous.

The first two imply ∀x ∈ R.FX (x) ∈ [0,1]. For fi-
nite intervals (a,b] ⊆ R, we can check PX (a < X ≤
b) = FX (b) − FX (a) by noting E = {X ≤ b} may be
rewritten as E = (−∞, a]∪ (a,b].
4 Discrete Random Variables
An RV X is discrete iff supp(X) = {x1 , · · · } is
countable. If supp(X) is ordered s.t. x1 < x2 < · · · ;
then SX = {s ∈ S | X(s) ≤ X} is constant as we in-
crease x in interval [xi−1 ,xi ). Once x = xi , SX
grows larger to include outcomes that map to
xi . Thus, FX will be a monotonic increaasing
step function with vertical jumps at points in
supp(X). PX (X = xi ) = FX (xi )−FX (xi−1).
For DRV X we define PMF p(x) = PX (X = x). If
X can take values in supp(X) then ∀x ∈ R.0 ≤
p(x) ≤ 1 and

∑
i p(xi ) = 1.

p(xi ) = FX (xi )−FX (xi−1)

FX (x) =
i∑

j=1

p(xj )

The expectation of X, E[X] =
∑
x xp(x) is the

weighted avg of possible values of X, or the
mean of the distribution:

• E[g(X)] =
∑
x g(x)p(x)

• ∀a,b ∈ R.E[aX + b] = aE[X] + b
• E[g(X) + h(X)] = E[g(X)] +E[h(X)]

E[Xn] is the n-th moment of X. The central
moment is recentered to characterize deviation
from the mean. The variance of X is the second
central moment of X:

Var(X) = E[(X −E[X])2] = E[X2]−E[X]2

The standard deviation is the sqrt of the vari-
ance. ∀a,b ∈ R.Var(aX + b) = a2Var(X). The
skewness of X is a measure of its assymetry,

γ1 = E[(X−E[X])3]
sd(X)3

.

Let Sn =
∑n
i=1Xi be the sum of n non indepen-

dent RVs of unkown distributions, and X = Sn
n

be their average:

E[Sn] =
∑n
i=1 E[Xi ]

E[X] = 1
n
∑n
i=1 E[Xi ]

If the vars are independent:

Var(Sn) =
∑n
i=1Var(Xi )

Var(X) = 1
n2

∑n
i=1Var(Xi )

If the vars are also identically distributed:

E[X] = µX

Var(X) = 1
n σ

2
X

4.1 Bernoulli Distribution

An experiment with two possible outcomes X ∼
Bernoulli(p) with p(x) = px(1 − p)1−x for x ∈
{0,1}. It follows that µ = p and σ2 = p(1− p).

4.2 Binomial Distribution

An experiment with n identical Bernoulli trials
X ∼ Binomial(n,p)with p(x) =

(
n
x

)
px(1−p)(n−x),

remembering
(
n
x

)
= n!

x!(n−x)! . Also, µ = np, σ2 =

np(1− p) and γ1 = 1−2p√
np(1−p)

.

4.3 Geometric Distribution

Consider a potentially infinite sequence of in-
dependent Bernoulli(p) RVs. Let X be the
first successful trial, then X ∈ N+ and X ∼
Geometric(p) with p(x) = p(1 − p)x−1. Also,

µ = 1
p , σ

2 = 1−p
p2

and γ1 = 2−p√
1−p .

4.4 Poisson Distribution

Poisson is concerned with number of random
events happening per unit space. For λ > 0, X ∼

Poisson(λ) with p(x) = e−λλx
x! . Also µ = σ2 = λ

and γ1 = 1√
λ
. For non-unit intervals, λt re-

places λ, where λ is the rates at which events
occur, and t is a time period.

4.5 Discrete Uniform Distribution

If X ∈ {1, · · · ,n} then X ∼ U({1, · · · ,n}) with p(x) =
1
n . Also, µ = n+1

2 and σ2 = n2−1
12 .

5 Continuous Random Variables

An RV X is continuous if ∃fX : R→ R such that
FX (x) =

∫ x
−∞ fX (u) du. Then fX is the pdf of X,

and PX (a < X ≤ b) =
∫ b
a fX (x) dx. Hence, ∀x ∈

R.PX (X = x) = 0, hence the support of a CRVmust
be uncountable to sum to 1. fX (x) = d

dx FX (x).

The pdf is non-negative, and
∫∞
−∞ fX (x) dx = 1.

For CRV X, E[g(X)] =
∫∞
−∞ g(x)fX (x) dx and

Var(X) =
∫∞
−∞(x−E[X])2fX (x) dx. The α-quartile

QX (α) for 0 ≤ α ≤ 1 is the least number satisfy-
ing P(X ≤ QX (α)) = α: QX (α) = F−1X (α). e.g. the
median of X solves FX (x) = 0.5.

5.1 Continuous Uniform Distribution

If X ∈ (a,b) is uniformly distributed, X ∼

U(a,b) with f (x) =

 1
b−a a < x < b

0 o.w.
and F(x) =

0 x ≤ a
x−a
b−a a < x < b

1 x ≥ b

. Also µ = a+b
2 and σ2 = (b−a)2

12 .

5.2 Exponential Distribution

If CRV X is exponentially distributed with rate
λ > 0, X ∼ exp(λ) with f (x) = λe−λx for x ≥ 0
and F(x) = 1 − e−λx for x ≥ 0. Also µ = 1

λ and

σ2 = 1
λ2

.

The memoryless property states ∀s, t ≥ 0.P(X >
s + t | X > s) = P(X > t). e.g. if we have waited s
time for a random event, this doesn’t affect how
long we have left to wait.
If random events occur with Poisson(λ), the
time between them ∼ exp(λ).

5.3 Normal Distribution

A normal RV X ∼ N (µ,σ2) with

f (x) = 1
σ
√
2π

exp
{
− (x−µ)

2

2σ2

}
and F(x) =

1
σ
√
2π

∫ x
−∞ exp

{
− (t−µ)

2

2σ2

}
dt.

When µ = 0 and σ = 1 we get standard normal

Z ∼ N (0,1) with f (z) = ϕ(z) = 1√
2π

e
− z

2
2 and

F(z) = Φ(z) = 1√
2π

∫ z
−∞ e

− t
2
2 dt. We can stan-

dardize with X ∼ N (µ,σ2) ⇒ X−µ
σ ∼ N (0,1).

Hence, FX (x) =Φ( x−µσ ), and P(Z > z) = 1−Φ(z) =
Φ(−z).
5.4 Lognormal Distribution

If X ∼ N (µ,σ2) and Y = eX then Y
has a longnormal dist. with fY (y) =

1
σy
√
2π

exp
{
− (log(y)−µ)

2

2σ2

}
.

6 Moment Generating Functions

The MGF of CRV X is MX (t) = E[etX ] =∫∞
−∞ etx fX (x) dx, or for DRV Y is MY (t) =

E[etY ] =
∑
yi∈supp(Y ) e

tyi p(yi ). This pro-
vides an alternative way to obtain E[Xn] =
dn
dtn MX (t)|t=0.
The characteristic func modifies the mgf
and is defined ∀ RVs: ϕX (t) = MX (it) =∫∞
−∞ eitx fX (x) dx and E[Xn] = i−n dn

dtn ϕX (t)|t=0.

Since E[
∏n
i=1Zi ] =

∏n
i=1 E[Zi ], we have

M∑n
j=1Xj

(t) =
∏n
j=1MXj

(t).

7 Random Variable Inequalities
Themarkov inequality states for any RV X ≥ 0:

∀a > 0.
[
P(X ≥ a) ≤ E[X]

a

]
.

The chebyshev inequality states for RV X: ∀k >

0.
[
P(|X −µ| ≥ k) ≤ σ2

k2

]
. This can be proven by

applying the markov inequality to Y = (X − µ)2
and a = k2.
8 Joint Random Variables

∀⟨x,y⟩ ∈ R2 let S ⊇ Sxy = {s ∈ S | X(s) ≤ x∧Y (s) ≤
y}. Then when Z = ⟨X,Y ⟩, F(x,y) = PZ (X ≤ x,Y ≤
y) = P(Sxy ). The marginal CDF FX (x) = F(x,∞)
and FY (y) = F(∞, y).

• ∀x,y ∈ R.0 ≤ F(x,y) ≤ 1
• Monotonic: ∀x1 ,x2 , y1 , y2 ∈ R.[(x1 < x2 ⇒

F(x1 , y1) ≤ F(x2 , y1) ∧ (y1 < y2 ⇒ F(x1 , y1) ≤
F(x1 , y2))].

• ∀x,y ∈ R.[F(x,−∞) = F(−∞, y) = 0∧ F(∞,∞) =
1].

PZ (x1 < X ≤ X2 , y1 < Y ≤ y2) =

F(x2 , y2)−F(x1 , y2)−F(x2 , y1) +F(x1 , y1)

We can define joint PMF as p(x,y) = PZ (X =
x,Y = y), and marginal PMF as pX (x) =∑
y p(x,y) and pY (y) =

∑
x p(x,y). ∀x,y ∈ R.0 ≤

p(x,y) ≤ 1 and
∑
y
∑
x p(x,y) = 1.

We can define joint PDF as f (x,y) = ∂2
∂x∂y

F(x,y)

s.t. F(x,y) =
∫ y
−∞

∫ x
−∞ f (u,v) du dv and

marginal PDFs as fX (x) =
∫∞
−∞ f (x,y) dy and

fY (y)
∫∞
−∞ f (x,y) dx.

8.1 Joint Definition On Subsets
Let X,Y be random variables on sample space
S with probability measure P. For sub-
sets BX ,BY ⊆ R, the joint probability is:
PXY (BX ,BY ) = P ({ω ∈ S : X(ω) ∈ BX ,Y (ω) ∈ BY })
That is, PXY (BX ,BY ) = P(X ∈ BX ,Y ∈ BY ).
8.2 More Joint Stuff
1. Joint PDF / PMF: - fX,Y (x,y): probabil-
ity density (or mass) of (X,Y ) - Must satisfy:s

fX,Y (x,y)dxdy = 1
2. Marginals: - fX (x) =

∫
fX,Y (x,y)dy - fY (y) =∫

fX,Y (x,y)dx
3. Independence: - X ⊥ Y iff fX,Y (x,y) =
fX (x)fY (y)

4. Conditional Density: - fX |Y (x|y) =
fX,Y (x,y)
fY (y)

(if fY (y) > 0)
5. Expectation: - E[g(X,Y )] =s

g(x,y)fX,Y (x,y)dxdy
6. Covariance: - Cov(X,Y ) = E[XY ]−E[X]E[Y ]
7. Correlation: - ρX,Y = Cov(X,Y )

σXσY
8. Law of Total Expectation: - E[X] = E[E[X |Y ]]
9. Sum of Independent RVs: - fZ (z) =∫
fX (x)fY (z − x)dx (convolution)

10. Transformation: - For Z = g(X,Y ):

P(Z ∈ B) =
x

(x,y)∈g−1(B)

fX,Y (x,y)dxdy

8.3 Convolution Theorem
Let X,Y be independent continuous random
variables with PDFs fX (x), fY (y). Then the PDF
of Z = X + Y is the convolution of fX and fY :
fZ (z) = (fX ∗ fY )(z) =

∫∞
−∞ fX (x)fY (z − x)dx.

• Valid iff X and Y are independent.
• P(Z = z) =

∑
k P(X = k)P(Y = z − k).

- Only - Same idea for discrete case: P(Z = z) =∑
k P(X = k)P(Y = z − k) - Convolution mixes the

distributions to give the distribution of the sum.
9 Independence & Expectation
X and Y are independent iff ∀x,y.[F(x,y) =
FX (x)FY (y)], implying ∀x,y.[p(x,y) =
pX (x)pY (y)] and ∀x,y.[f (x,y) = fX (x)fY (y)].
Hence:

• If g(X,Y ) = g1(X) + g2(Y ) then E[g(X,Y )] =
E[g1(X)] +E[g2(Y )].

• If g(X,Y ) = g1(X)g2(Y ) and X,Y are indepen-
dent then E[g(X,Y )] = E[g1(X)]E[g2(Y )].

• Hence, E[XY ] = E[X]E[Y ] ifX,Y are indepen-
dent.

For an RV X, σ2X = E[(X − µX )2]. The bivariate
ext of this is the covariance σXY = Cov(X,Y ) =
E[(X −µX )(Y −µY )] = E[XY ]−µXµY . When X,Y
independent, σXY = 0.
Covariance measures how RVs change in re-
lation to one another. The correlation coeff.
ρXY = Cor(X,Y ) = σXY

σXσY
. When X,Y are inde-

pendent, ρXY = 0.
9.1 Multivariate Normal Distribution
A random vec X = ⟨X1 , · · ·Xn⟩ with µ =
⟨µ1 , · · ·µn⟩ is multivariate normal with fX =

1√
(2π)n detΣ

exp
(
− 12 (x −µ)

T Σ−1(x −µ)
)
where Σ

is the positive definite covariance matrix of X:

Σ =


σ11 · · · σ1n
.
.
.

. . .
.
.
.

σn1 · · · σnn


X1 , · · · ,Xn need not be independent.

1



10 Conditional Distributions

f (x|X > Y ) = f (x)
P(X>Y )

A conditional PMF pX |Y (x | y) =
p(x,y)
pY (y) is valid

∀pY (y) > 0. Bayes’ Theorem states:

pX |Y (x | y) =
pY |X (y | x)pX (x)

pY (y)

A conditional PDF is fX |Y (x | y) =
f (x,y)
fY (y) . Now,

X,Y are independent iff ∀x,y ∈ R.[fY |X (y | x) =
fY (y)]. Bayes’ theorem:

fX |Y (x | y) =
fY |X (y | x)fX (x)

fY (y)

A conditional CDF is FX |Y (x | y) = P(X ≤ x | Y =

y) =
∑x
u=−∞ PX |Y (u | y) or

∫ x
−∞ fX |Y (u | y) du.

From this, P(a < X ≤ b | Y = y) = FX |Y (b | y) −
FX |Y (a | y).
The law of total probability states:

1. pX (x) =
∑
y pX |Y (x | y)pY (y).

2. fX (x) =
∫∞
−∞ fX |Y (x | y)fY (y) dy.

3. FX (x) =
∫∞
−∞ FX |Y (x | y)FY (y) dy.

The conditional expectation of DRV Y is
EY |X [Y | X = x] =

∑
y ypY |X (y | x).

The conditional expectation of CRV Y is
EY |X [Y | X = x] =

∫∞
−∞ yfY |X (y | x) dy.

In either case, expectation is a func of x but not
Y .
The law of total expectation states EY |X [Y | X]
is an RV s.t. EY [Y ] = EX [EY |X [Y | X]] for both
discrete and cts.
11 Markov Chains
Discrete Time Markov Chains (DTMC) sup-
port arbitrary and dependent RVs:

• J is the state space of possible states.
• Xn≥0 ∈ J , models the state at time n.
• Realization X0 ,X1 , · · · is sample path.
• Goal: calculate P(Xn = j).

We assume the markov property (next state
depends only on current state): P(Xn+1 =
jn+1 | Xn = jn , · · · ,X0 = j0) = P(Xn+1 =
jn+1 | Xn = jn). We require an initial prob
vector π0 = [π0i ]

T where P(X0 = i) = π0i and
translation prob matrix R = [rij ] where rij =
P(Xn+1 = j | Xn = i). This gives rise to the fol-
lowing props:

• Each rij is independent of time n.
• Stuck states allowed (e.g. rii = 1).
• R is a non-negative stochastic matrix (rows

sum to 1).

In general, transient analysis shows that:

P(Xn+1 = j | Xn = i) = rij

P(Xn = j | X0 = i) = (Rn)ij

P(Xn = j) = (π0R
n)j

P(Xn = i) = π∞i

DTMC stabilize as a limiting distribution:
π∞ = limn→∞π0R

n or steady state distribu-
tion: π∗∞ that is invariant under R (i.e. ∀n ≥

0∀j ∈ J.
[
P(Xn = j) = 1π∗∞j

]
). These may not be

unique. All limiting dists are steady state dists.
A DTMC is irreducable if the directed graph
associated to R is strongly connected: ∀⟨i, j⟩ ∃
sample path from i to j. A DTMC is periodic
if its states can only be visited at integer mul-
tiples of a fixed period. If it is irreducable and
aperiodic:

• There exists unique π∞ = π∗∞.
• The elements of π∞ are > 0.
• π∞ solves π∞R = π∞ subject to

∑
i π∞i = 1.

Don’t worry about the last case. Simply subssite
st first few are valid.

Without aperiodicity, an irreducable DTMC has
no valid limiting distribution, however ∃π∗∞ s.t.
π∗∞ solves π∗∞ = Rπ∗∞ subject to

∑
i π
∗
∞i

= 1.
12 Estimation Theory
A sample of a population, x = ⟨x1 , · · · ,xn⟩ is
a realisation of RVs X = {X1 , · · · ,Xn}. A single
draw follows P(· | θ) where θ = ⟨θ1 , · · · ,θn⟩ are
the params to estimate, assuming Xi are inde-
pendent & identically distributed (iid). A statistic
T (X) is an RV:

• If approxes θ, T is an estimator of θ.
• Realisation t(x) is an estimate of θ.
• We study P(T | θ) and its moments.

The bias of T is bias(T ) = E[T | θ] − θ. For any
X, the sample mean X is an unbiased estimate

for µ: E[X] = E

[∑n
i=1Xi
n

]
= µ.

For variance, we use Bessel’s Correction:
E[S2] = E[ 1

n−1
∑n
i=1(Xi −X)2] = σ2.

T is more efficient than H if ∀θ.[Var(T | θ) ≤
Var(H | θ)] and ∃θ.[Var(T | θ) < Var(H | θ)]. If
∀H T is more eff. than H , then T is efficient.
T is consistent if ∀ϵ > 0.[P(|T (X) − θ| >
ϵ) → 0 as n → ∞], or if it is unbiased and
limn→∞Var(T (X)) = 0.
Sample Variance as a Biased Estimator: Let
X1 ,X2 , . . . ,Xn be a sample from a population
with mean µ and variance σ2. The sample vari-
ance is defined as:

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

where X̄ = 1
n
∑n
i=1Xi is the sample mean.

12.1 Bias in Sample Variance
We want to show that E[S2] , σ2. Start by ex-
panding S2:

S2 = 1
n−1

∑n
i=1(Xi − X̄)2

= 1
n−1

(∑n
i=1(Xi −µ)2 −n(X̄ −µ)2

)
Taking the expectation:

E[S2] = 1
n−1

(
E
[∑n

i=1(Xi −µ)2
]
−nE[(X̄ −µ)2]

)
We know that:

E[(Xi −µ)2] = σ2 for each i

Thus, E[
∑n
i=1(Xi −µ)2] = nσ2. Also, E[(X̄−µ)2] =

σ2
n , so:

E[S2] = 1
n−1

(
nσ2 −n · σ

2
n

)
= n−1

n σ2

Therefore, E[S2] = n−1
n σ2 shows that the sam-

ple variance is a biased estimator of the popu-
lation variance.
Correction Factor: The bias can be corrected by
using the factor n

n−1 , resulting in the unbiased
estimator:

σ̂2 = n
n−1 S

2

12.2 Extra Bias Notes
1. Bias of an Estimator: The bias of an estima-
tor θ̂ for a parameter θ is defined as:

Bias(θ̂) = E[θ̂]−θ

If Bias(θ̂) = 0, θ̂ is an unbiased estimator. If
Bias(θ̂) , 0, θ̂ is biased.
2. Unbiased Estimators: For an estimator θ̂ to
be unbiased:

E[θ̂] = θ

Common unbiased estimators:

• Sample mean: E[X̄] = µ
• Sample variance (corrected): E[σ̂2] = σ2
• Sample proportion: E[p̂] = p

3. Mean Squared Error (MSE): MSE is used to
measure the quality of an estimator and com-
bines both bias and variance:

MSE(θ̂) = E[(θ̂ −θ)2] = Var(θ̂) +
(
Bias(θ̂)

)2
MSE is minimized when the estimator is both
unbiased and has minimal variance.
4. Consistency of Estimators: An estimator θ̂n
is consistent for θ if:

θ̂n
P−−→ θ as n→∞

This means that as the sample size increases, θ̂n
converges in probability to θ.
5. Efficient Estimators: An estimator is effi-
cient if it has the smallest variance among all
unbiased estimators. The Cramer-Rao lower
bound gives the theoretical minimum variance
for an unbiased estimator:

Var(θ̂) ≥ 1
nI (θ)

where I(θ) is the Fisher information.
6. Bias-Variance Tradeoff: For many estima-
tors (e.g., in regression), theres a tradeoff be-
tween bias and variance. Reducing bias often
increases variance, and vice versa. The optimal
estimator minimizes the MSE.
13 Maximum Likelihood
The likelihood func L(θ) =

∏n
i=1 f (xi | θ) is

the product of n pdfs viewed as a func of θ.
We can find θ̂ that solves d

dθ log(L(θ̂)) = 0. If
d2

dθ2
log(L(θ̂)) < 0, θ̂ is a maximum likelihood

estimator of θ - the best estimate for the param-
eter is the one that maximizes the likelihood of
the observed data.
14 Central Limit Theorem
Let X1 , · · · ,Xn be iid RVs with mean µ and
var σ2. We know E[Sn] = nµ and Var(Sn) =
nσ2. Thus, E[Sn − µ] = 0 and Var(Sn) = nσ2.

Finally, E[ Sn−nµ
σ
√
n

] = 0 and Var( Sn−nµ
σ
√
n

) = 1:

limn→∞
X−µ
σ/
√
n
∼N (0,1). If Xi ∼N (µ,σ2), the re-

sult is exact.

15 Hypothesis Testing
Consider hyp H0 that takes param θ and value
θ0. We can test with a two sided H1 : θ , θ0 or
one sided H1 : θ > θ0. For test statistic T , we
find a distribution under H0. We define a rejec-
tion region R ⊆ R such that P(T ∈ R | H0) = α,
the significance level. If t ∈ R, we reject H0.
To test the mean, we define R as the tails of
N : R = (−∞,−zα/2) ∪ (zα/2 ,∞). σ2 may be un-
kown, but S2 is known. In this case, use t-
distributionwith ν = n−1 degrees of freedom s.t.

T = X−µ0
S/
√
n
∼ tn−1. Now, R = (−∞,−t⟨n−1,1−α/2⟩)∪

(t⟨n−1,1−α/2⟩ ,∞).
The p-value is the probability that a test
statistic is at least as extreme as observed.
Thus for fixed α, we reject H0 if p ≤ α.
Side Tail Var P-Value
1 Low σ2 p =Φ(z)
1 Low S2 p = F(t) †
1 Up σ2 p = 1−Φ(z)
1 Up S2 p = 1−F(t) †
2 - σ2 p = 2(1−Φ(|z|))
2 - S2 p = 2(1−F(|t|))†
† F is the CDF of the t-distribution.

16 Discrete Event Simulation
A DES generates a random sample path
through a state transition system with time de-
lays at each state. Times between events are RVs
- getting a sample path involves sampling these.
To design a DES:

1. Identify the entities to be modelled.
2. Identify the model states.
3. Identify the event types.
4. For each event specify how it changes curr

state, what new events need to be can-
celled/scheduled when it fires.

5. Add code to calc measurements when the
sim is running.

6. Add code to output results.

17 Output Analysis
A non-terminating sim seeks to model a sys-
tem at equilibrium ( ∀s ∈ States.[as t →
∞,ps(t) → ps ]). A terminating sim models a
system over a period with no notion of equi-
librium. Initial state is fixed, and distribu-
tion changes after t≫ 0, which takes some time
to converge. To avoid initialization bias, we
discard initialization transient by resetting mea-
sures after some warm up time, or render long-
enough to make bias insignificant.
DES are stochastic, so outputs are RVs and ob-
servations of a measure θ. If RVs X1 , · · · ,Xn
are steady-state observations from a sim, then
an estimator for θ is the mean X = 1

n
∑n
i=1Xi .

By CLT, X ∼ N
(
µ, σ

2
n

)
. As n is large and σ2 is

known:

1. P
(
−1.96 ≤ X−θ

σ/
√
n
≤ 1.96

)
≈ 0.95.

2. µ0 is unknown, but by generating many in-
tervals [X−1.96 σ√

n
,X+1.96 σ√

n
] using differ-

ent simulations, we conclude with 95% con-
fidence the true µ lies within one of the in-
tervals.

3. > 95% Confidence Interval for µ.

To find a 100(1 −α)% confidence interval for µ:
X ± z1−α/2 σ√

n
. When the variance is unknown,

we use S2: X ± t⟨n−1,1−α/2⟩ S√
n
.

Applying to DES: We could run the sim many
times, once we reach a narrow confidence inter-
val, we stop.
Another approach is to run the sim once un-
til approx equilibrium is reached. Then, divide
measurement into batches. If each Xi is sample
mean of batch i, this is called the samplemeans
method. Xi may be dependent, so we need co-
variance to construct the confidence interval:

Var(X) = σ2
n + 1

n2

[
2
∑n−1
i=1

∑n
j=i+1Cov(Xi ,Xj )

]
If covs are > 0, then S2

n is an under-estimate of
the var of X and the confidence interval is too
narrow.
18 Distribution Sampling
Sims depend on the ability to sample cts ran-
dom distributions. For RV X, we want a sam-
pling func U(0,1)→ supp(X).
18.1 Inverse TransformMethod
Suppose X is a cts RV with CDF F(x) = P(X ≤ x).
Then by setting an RV U ∼ U(0,1) as U = F(X),
and solving for X (invert), we get a transforma-
tion from U to X. This also works for discrete
RVs.
18.2 Acceptance Rejection Method
If F(X) cannot be inverted, we choose a density
function g(x) that is easy to sample from. Now,
we try to find a constant c s.t. cg(x) = h(x) and
∀x.h(x) ≥ f (x). By construction, c = c

∫
X g(x) dx =∫

X h(x) dx. c =maxx∈supp(X)
f (x)
g(x) .

1. Let X be a sample from RV whose density
function is g(x).

2. Generate a U(0,1) sample, U .
3. Let Y =Uh(X).
4. If Y ≤ f (x) (i.e. U ≤ f (X)

h(X) ), then accept X,

otherwise reject it and start again.

The probability of accepting X is p = 1
c . Num-

ber of required iterations before accepting is
geometrically distributed, so expected iterations
E[I ] = c − 1.
18.3 Convolution Method
To sample a sum of independent RVs, sample
them individually and then add the results.
18.4 Composition Method
Consider a discrete RV Y with supp(Y ) =
{1, · · · ,n} and ctx RV X with fi (x) = f (x | Y = i).
Now, we pick an i with probability P(Y = i),
then sample from density fi (x).
19 Common Formulae

• ex =
∑∞
n=0

xn
n!

•
∫
x−1 dx = lnx + c

• d
dx (f (x)g (x)) = f (x) d

dx g (x) +
d
dx f (x)g (x)

•
∫
udv = uv −

∫
v du

• d
dx e

nx = nenx

•
∫
enx dx = 1

n e
nx +C (for n , 0)

• limx→c
f (x)
g(x) = limx→c

f ′ (x)
g′ (x)

• d
dx

f (x)
g(x) =

g(x)f ′ (x)−f (x)g′ (x)
[g(x)]2

• d
dx u = u dv

dx + v du
dx

• dy
dx = dy

du
du
dx

2


