1 Vector & Matrix Norms

A vector norm on R" is a real map ||| :

R" — R satisfying the following:

1. VReR" [0 = ||F|> 0].

2. YA e RVYX e R™[||AX]| = |Al[1%]]]-

3. VX7 e R™[|[¥+ 91| < [I¥]l + [I71]].

For p > 0 the {,-norm of ¥'is defined as:
19l = (X1, IxilP )P

¥l = X5y lxil

1912 = I %7

lI¥llco = max <i<p il
Any vector norms || - |5, - |l in R" are
equivalent: dr,5 > 0 s.t. VX e R™.[r||x|, <
1€l < slIxllq]-
A matrix norm on is a real map
[I]]: R"™" — R satisfying the following:

1. VAER™M[A20 = ||Al > 0].
2. VAeRYA e R™M [|AA]| = [A][IA]l].
3. VA, B e R™" [||A +B|| < ||A]| +IBIl].

Rmxn

In a sub-multiplicative matrix norm,
YA € R™MYB e R™P[||AB| < |IAlllIBII)-
We define /,;-nporms of a rix as:
B4lf= max; |fél?1f
1All2 = o1 (A)

Alleo = 1AT 11

IAllF = X2 X0 lagjl?
A matrix norm on R"*"’is consistent on
vector norms ||-||; on R” and ||-||, on R™ iff
VA € R™NYE € R[IAR] < [IA]I7],). 1f
a = b then they are compatible. For a vec-
tor norm, the subordinate matrix norm is
YA e R"™ || All = max{||AX]| : x e R", ||¥]| =
1}. A vector norm is compatible with its sub-
ordinate matrix norm.
2 Linear Maps on C"
The standard inner product is defined as
Vil,7 € C"(u,v) = v = L uiv;.
3 Least Square Method

The orthogonal projection 7y : R" —
R™ is v > ny(®) = UWUTU) Uty
imA | kerAl, hence ¥Y¥ € R™, there
exist unique X; € imA,x; € kerA s.t.
> > —
X = X; + X

Suppose V¥ € R", A% = b has no solution
(i-e. be imA). The Least Square Method
finds x € R" s.t. ||AX - 5”2 is minimized.
This happens iff ||[AX-b;||; = 0, or AX= b_:
AT AR = ATy is the normal equation,
whose solution also solves the least
square problem. To find the best affine
map (straight line) Y = mX + ¢ we solve
1 X
ATA [:1] = ATY where A =
1 X,

3.1 Linear Regression

Suppose we have a set of points (y;,4;)
where y; € R, a; € R". We want to find a
model of best fit with params sp € R, §€ R”
s.t. the sum of errors squared Y[ | (sg +5"

—y;)? is minimized: Vi.[s +5" @ ~ v;].
To solve with least squares, let:

S
1 an ain 5(1)
A= - s z=| . [er!
1
aml Amn Sy
Y (s +5 @ —pi)? = |AZ- 9113

4 Spectral Decomposition

A matrix Q € R™" is orthogonal iff it
is invertible and Q! = QT. This im-
plies |detQ| = 1, & V eigenvalues A of
Q1A =1.

A matrix A € R™" is symmetric iff
AT = A. Then, all eigenvalues of A are
real, and their algebraic and geometric
multiplicities are equal. Also, any eigen-
vectors with different eigenvalues are
orthogonal.

Any symmetric matrix A € R"™" can be

diagonalized as A = eDQT = oDO Y,

where Q is orthogonal and D is diagonal

matrix of not necessarily distinct eigen-

values. To find the SD of A:

1. Find characteristic polynomial of A,
solve to find eigenvalues A; of A.

2. For each distinct A;, find correspond-

ing eigenspace Ej .

3. For each Ej;, find orthonormal basis
WAL vE2 v, dlmEA )-

4. The bases v,\ are columns of Q and
eigenvectors of A. Done!

5 Singular Value Decomposition

A symmetric matrix A € R™" is pos-
itive semi-definite (non-negative eigen-
values) iff V¥ € R".%T A% > 0, and pos-
itive definite (positive eigenvalues) iff
vZeR" —{0}.¥T AZ> 0.

For any A € R"™", ATA ¢ R"™" and
AAT e R™™ are symmetric & positive
semi-definite.

For any A € R™*", the Singular Value
Decomposition of Ais A=US VT, where
U € R"™" and V € R™" are orthogonal,
and S = diag(o1,**+,0p) and p = min(m, n)
where 01 > --- > 0, > 0 are the singular
values of A. This gives rise to properties:

* The rank r = rk(A) is equal to the num-
ber of positive singular values in S:
o1 >--20r>0and 041 =+ =0p =0.

* lAllz = o1.

* The positive singular values of A are
the positive square roots of the eigen-
Va,llues of AAT or AT A.

TO Compute SVD of A, we pick the smaller

of ATA and AAT and then:
1. Solve det(A A Al = 0 to get Aq,---.
. Take sqrts to get 01,-:-. Skip A; = 0

. Find v; by solvin, (AT A Ailv; = 0.

. v; are cols of V. MUST BE or ‘thonormal.
. Construct S from o; (same shape as A).
Voj #0, uj = = Av;.

. u; are cols of b, If cols are missing use
gram schmidt or cross product.

NG w N

If you pick AAT then calc U before V
in the same way. Also:

* rk(A) = num of ¢; # 0.
* llAll2 = omax(A).

* im(A) =span{uy,---u,}, r = rk(A).
5.1 Principal Component Analysis
Assume A € R™" represents m samples
of n-dim data. The principal axes of A
are the cols of V, and the cols of US (i.e.
oju;) are the principal components of A.

wT AT Aw is maximised VT w
v1. Assuming |lw||, = 1.

=ey,w=

A=Y, oju v . Then to max ||Ax||,, we
need to ahgn x =] (since vy corresponds
to largest o,. This maxes the contribu-
tions.

6 Generalized Eigenvectors

For A € R™", non-zero v € C" is a gener-

alized eigenvector of rank m (v) with
assoc eigenvalue A € C iff (A— AI)™v =0
and (A- A" 1y = 0.

If an eigenvalue ) has algebraic multi-
plicity k, there are k linearly independent
generalized eigenvectors associated with
A. A € R has n linearly independent
generalized eigenvectors - 3 a basis of C"
of generalized eigenvectors of A.

They always solve (A - A;I)vg =v;.

6.1 Jordan Normal Form (JNF)
A matrix is in JNF if it is in the form:

Ji (A1) - 0
0 o Tk, (An)
where Ji, (A;) is a jordan block of size k;:
A1
0 A

The algebraic multiplicity of A is the sum
of the sizes of blocks with A on the diago-
nal. The geometric multiplicity of A is the
number of blocks with A on the diagonal.

To find the JNF of A € R"™":

1. Compute eigenvalues A; and their al-
gebraic multiplicity a; for A.
2. Find E);, the geometric multiplicities

: 1 1
gi» and eigenvectors v;, v

igi”
3. If gi <aj, find a; — g missirig gener-
alized eigenvectors: Vvl € C" asso-
ciated with A;, find all 1/ eC"s

kl

(A=A I) (Gau551an elim.)

4. Change of basis B =
1 ki1 1 kg
(vl v Vg Vg
1 km1 1 k’”gm
V17" Vml ""r"}mgmf"" mgm ]
Jkiq (A1) 0
5. Now J = . .
0 ]kmgm( )
6. B-1AB=].

7 Cholesky Decomposition

A € R™™" is lower triangular iff Vi <
j-Aij = 0; upper triangular iff ¥i >
J-Aij=0

Let A € R™" be symmmetric. If it is
postive definite, all its diag elems are
> 0 and \‘/i,j.maX(Aii,Ajj) > |A1]| If it
is positive semi-definite, all its diag el-
ems are > 0 and Vi,j.max(4;;,Ajj) >
|Aij|~ As a consequence, the largest co-
efficient of A is on its diagonal. Also
the 1x1,---,nxn matrices in the upper
left corner of A are also positive (semi-
)definite.

The cholesky decomposition of A € R"*"
is A = LLT where L is a lower triangular
matrix. A is positive semi-definite & L €
R™" gt. L is lower triangular and A =
LLT. A s positive definite & AL € R™"

s.t. Lis lower triangular and A = LLT and
Vi.L;j; > 0. To find a CD:

I 0 0
1. Consider L = b1 I 0

2. Solve A = LLT. Example for 3 x 3:
12 i1l
1131 +122132

2 .02 2
I +15,+153

hiln
111121 l%l +l§2
hi1lzr Il + 1213

S is contained in the diagonal elems of L.

8 QR Decomposition

Let A € R™" = lag - a,,] s.t.
ai,---,a are linearly independent. Ap-
ply gram schmidt to get (ey,---,ey) s.t.
spanfe,---,e,} = spanfay,---a,}. If we

let semi-orthogonal Q = [61 e,,] €
R" " then A = QR with upper triangular:

(er-a1) (e1-a2) (e1 - ay)

0 (e2-az) (e2 - ay)
R= .
. 0 . .

0 0 (en'“n)

8.1 Householder Maps

Suppose a hyperplane P goes through 0
with unit normal u e R" (P ={x e R™ | u -
x = 0}). The householder matrix H, =
I -2uuT induces reflection wrt P.

9 Convergence in R

Let (ay)neN € RN be a seq of reals and
I eR. (a,) converges to I (lim,_,a, =1)
iff Ve > 0.AN e Ns.it. VYn > N.|a, — 1| <e.
(ay) is a cauchy seq iff Ve > 0.IN € N s.t.
Vn,m> N.|ay —ay| <e. (a,) converges iff it
is cauchy.

9.1 Metric Spaces

A metric space is (S,d) where S = 0 and
d:S xS — R satisfies the following:

. VYx,veS, d(xy)>0.

. Vx,p€eS,d(xy)= 0@x:y.

. Vx,peS, dxy)=4d(y,x).

. Vx%,9,z€S,d(x,y) <d(x,z)+d(z,).

=N~

If V is a vector space equippied with the
norm || - ||, then (V,(x,y) — |lx — | is a
metric space.

If (S,d) is a metric space and (a,) is a seq
in §, lim,_,,a, =1 iff Ve > 0IN e N
s.t. Vn> N.d(a,,l) <e. If (a,) is converg-
ing, the limit is unique. (a,) is cauchy iff
Ye>0.dN e Ns.t. Vu,m> N.d(a,, a,,) <e.
(a,) converges iff it is cauchy.
(S,d) is complete iff every cauchy seq in
S converges in S. For any k > 0, RK with
{1, €y or £y, is complete.
9.2 Fixed Point Equations
IfS#0and f:S — S, then p € Sisa fixed
point of f if f(p) =
f:S — S is a contraction of S in (S,d)
iff 3 contraction constant 0 < a <1 s.t.
Vx,y € S.d(f(x), f(v) < ad(x,). If (S,d)
is complete and f is a contraction of S, then
f has a fixed point.
10 Projectors
proj,(v) £ 2l u

The hermatian conjugate or ajoint of

AeC™" s A*: AT with all elems con-

jugated. Hermatian Matrix: A = A*.

P is a projector iff Pv = proj, (v). Then:
+ P = P? (Reprojection does nothing.)
* (I-P)is also a projector.

* range(P)=null(I-P)=S;.

* range(I - P) =null(P) = S,.



e If S orthogonal to Sy, then P is an or-
thogonal pr0]ector (not orth matrix).
P is an orth proj iff P = P*. If Q is an
orthonormal basis for range(P), then P =
Q0. Also, P, = uu*. To find orthonormal
basis, gram schmidt.
11 Condition Numbers
The measure of the sensibility of a prob-
lem to small pertrubations in its input.
Let problem P take input d and some
pertrubation e to give outputs s(d), s(d +
€). Then the condition number x(P):
_ lIs(d)—s(d+e)l|
«(P) = max, el
The condition number measures the worst
case scenario. The relative condition num-

ber is defined in terms of relative diff:

_ listd)—s(d-+e)l ||
K(P) =maxe == 1@

When checking if a system is staLlle, we
check the bound of the condition num-
ber Vd,e. If it is bounded, it is sta-
ble. A large CN means a ill-conditioned
problem. A small CN means a well-
conditioned problem.

11.1 Matrix Condition Numbers

For a non-singular square matrix A, its
condition number «(A) = [|[A7L[||A]l. If
the problem P is represented by the lin-
ear equation Ax = b, then «(P) = x(A).
The condition number of a non-square
matrix A is k(A) = ||A+||||A||, where At =
(ATA)1AT s the pseudo-inverse of A.
11.2 Conditioning of a Problem

To decide if a condition number is
big enough to say its problem is ill-
conditioned, we say: for a condition num-
ber x(, we lose ~ logy (k) significant fig-
ures in accuracy.

12 Stability

Fundamental Theory of Floating Point
Arithmetic states all operations have rel
error < €pachine- Define problem f : X —
Y and algorithm 7: X - Y. f(x) well
conditioned if small changes in x mean
small changes in f(x). f is backwards

stableiff f(x) = f(R)A ||Jﬁx|9|<H = O(€machine)

A backward mble algorithm gives exactly
the right answer to nearly the right question.
Flops & inner prod backwards stable.
Outer prod not. To find if F is:

1. Show f(x) is exact for perturbed X.
2. Verify rel err in X, x is o €pachine-

e.g. inner product xTy = Y xiyi:

o fA(xTy) = L1 (xipi)(1+ &), leil < en.
+ f(xTy) =%Ty, so exact.
o Bl = Bigl = jej) < e = Ofen).

13 Systems of Equations

Basic gaussian elim splits A = LU, but

this fails if diagonal elems ~ 0 - not back-

wards stable. The orders of rows is arbi-

trary so we can pivot using a orthonormal

permutation matrix P (1 non-zero entry

per col = 1). PA permutes rows, AP per-

muts cols. They change x(A). This is sta-

. max; j |ujj|

bleiff p = 7maxl.’; |a’§| =0(1).

13.1 Gradient Optimisation

Func f : X — Z has level curve X >
= {¥|f(¥) = c € Z}, which can be pro-

jected onto X to visualize f. % =
T
[ fon| # = Vfu. Vf =H =
fx1x1 fxlxm
: The grad Vf(%)
fxmxl fxmxm

is the direction of the maximum rate of

change |[Vf(X)|.

Conjugate Gradient Method solves Ax =

= %xTAx - bTx
It chooses dirs

b by solving miny f(x)
where Vf(x) = Ax - b.
p) s.t. they are conjugate: Vk,jk = j =
), py = pkIT Ap(i) = 0 using residuals
k) = —Vf =b —Ax(k) and step size a®);
=-V (0)

(k) _ r(k) /= p( ”AA )

i<k 0T op()

= argmin f(x) + <">p )=

(@)

p

‘U

2% pRIT (k)
Converges in < m iterations, as 05 are
orthogonal, form a basis for R™, hence
) 5,

14 Iterative Sol. to Linear Equations
Suppose we wish to solve Ax = b for A €
R™" and b € R". Gaussian elim is O(n3),
which is impractical. Instead, split A =
G+Rst Ax=b o x=G1b-GIRx.
Then if M = ~G™'R and ¢ = G™!b then
x = Mx +c. To solve this iteratively, we
must find a fixed point of f(x)=Mx+c.

Using fixed point theorem, we define seq
(xx) for some starting xq s.t. xp.1 = Mxy+

Then for a consistent norm || - ||, (xx)
converges form any starting point x if
[IM]| < 1.

The rate of conv r o« —log;q|IM]||, so we
pick G, Rs.t. -G™1Rand G~1b are easy to
compute, and ||[M|| is small.

14.1 Common Splitting

Assume wlog that A has no 0s on the diag
(if not so, perform a basis change). Then
A =D+L+U where D is the diagonal, and
L, U are the strict lower and upper trian-
gular parts of A.

P TAp(k)

14.2 Jacobi Method

If A=D+L+U, wesay A=D+R
where R = L+ U, then Ax = b © x =
Mx +cwhere M = -D 'R and ¢ = D71b.
Once again, consider seq (x(*)) defined as
x&+1) = Mx®) 4 c and x(0) € R™. Then:
—ﬁ Y j101,j%]

Mx=-D"1Rx=

ﬂn n Z’]¢” an’] x]

As xk+1) = Mx(0) 1 ¢ it comes that:
(k+1) _ (k)
o= a,; i~ Ljei %))

h element of x(k+1)

So to compute it
only need b, x(k), and the ith row of A,

which is great for parallelization.

, we

The conv rate is max A of D™1R.

14.3 Gauss-Seidel

Now, we split A= (D+L)+ U s.t. Ax =
b e x=Mx+cwhere M =—(D+L)"'U
and ¢ = (D + L) 1b. Once again, consider
k+1) = px®) 4 c and
x(0) € R, We can rewrite that as:

seq (x(K)) defined as x(

(D + L)x(k+1) - —Ux(k) b
k+1 k
Yjsiais ) ==Lpsiaijx) +bi
So to compute the ith elem of x(k*+1), we

only need A, x(k), b and the kth elems
of xk*1) for k < i. Since the update is
computed with more recent quantities, is
faster than jacobi. The conv rate is max A
of L1U.

14.4 Convergence

If A e R™" is strictly row diagonally
dominant: Yi.|a;;| > Z]-# |aij|, then Jacobi
and Gauss-Seidel methods will converge.

When x(A) is small, conv is faster. If x(A)
is too big, it may even diverge.

A matrix A is irreducible if by symmet-
ric permutations of rows and columns (i.e.
if you swap row a with row b, you must
swap col a with col b), it can not take
Arr Ar
are block matrices.

the form [ ] where A7 and 0

If A is weakly row diagonally dominant and
irreducible, Jacobi and G-S still converge.

15 Iteratively Finding Eigenvalues

Suppose we wish to find the eigenvalues
and eigenspaces of A € R™": we must
find roots of det(A — AI) and do gaus-
sian elimination for each eigenvector - an
O(n*) problem.

15.1 Power Iteration

Let A € R™" be a diagonalizable matrix
with As of distinct mod (Va, b.|A,] = [Ap]).
Let A € Rbe dominant (Vi.|A| >|A;]). Con-

sider the seq (xx) defined by x,q = 7”£§’;“

and xg € R\ {0}. Then:
Xk v lAxill — 1Al
Where v € R" is the normahzed dominant
eigenvector. Here, the notion of conv is
not rigorous, so we say (Xj) converges to a
corresponding eigenspace. However:
With random x is possible for the it.
to give 2nd dominant EVs. Make sure
there is at least one non-zero compo-
nent in the corresponding eigenspace.
For matrix with multiple EVs of max
modulus, power it. will converge to a
linear combination of the correspond-

ing eigenvectors.

conv may be slow if the dominant
eigenvector is not "very dominant".
 conv Rate~ 2.

15.2 Inverse PoWwer Iteration

Let A € R™" be a diagonalizable non-
singular matrix with eigenvalues of dis-
tinct modulus (Ya,b.|A,;| = |Ap]). This
means that Vi.A; # 0 and y is an eigen-
value of A iff y~! is an eigenvalue of A™!
with the same eigenvectors. So if A is the
smallest eigenvalue of A, A1 is the dom-
inant eigenvalue of A1,

Let A € R be the eigenvalue of the smallest
modulus. Consider the seq (xx) defined by

A-ly
and xg € R\ {0}. Then:

T+l = ||A1 0
X — v A~ — 14

Where v € R" is a normalized elggwector
corresponding to A. Conv rate ~ ’\/'\’—1
15.3  Shifts !
Let Ae R and s e R. A € Ris an
eigenvalue of A iff A —s is an eigenvalue
of shifted A —sI with the same eigenvec-
tors. If A € R™" is a diagonalizable ma-
trix with eigenvalues of distinct modu-
lus, and A —sI is non-singular (s is not an
eigenvalue of A), we can find the eigen-
value of A that is closest to s with inverse
power iterations on A —sI.

15.4 Rayleigh Quotient

For A € R™" and x € R"\{0}, the rayleigh
quotient R(A,x) = ’;TT—A;— an approx of an
eigenvalue directly and not its modulus.
15.5 Deflation

To find eigenvalues apart form the dom-
inant, we need to deflate the matrix A €
R"™" 1o B € R=1X(1-1) that has the same

eigenvalues as A but the dominant one.

Let Ay,---, A, by the eigenvalues of A s.t.
[A1]l>--- > |A,| with corresponding eigen-
vectors vi,--+,v,. Define H € R"™" as
a non-singular matrix s.t. Hx; = aeq,

where @ € R\ {0} and ¢; = [1,0,---,0]T.

Then, we have:

HAH 'e; = HASL = HAlx = 1¢
Since the 1st col of HAH™' is
[A1,0,---,0]T, we can write:

oY e LI

Where B € R(”’l)x(”’l). For any eigen-
value A and corresponding eigenvector v:
Ax = Mx & HAx = A\Hx & HAH ! (Hx) =
AHx. So A is an eigenvalue of A iff it is an
eigenvalue of HAH 1.
Let A, be the second dominant eigenvec-
tor of A s.t. Ay # A1. The corresponding
b7 2
T oA
and z; is the dominant eigenvector of B.

eigenvector xp = H™! [zﬁ;] with g =

We assumed that A; # Ap, or that the
dominant eigenvalue A; had geometric
multiplicity 1. Suppose that instead it
had geometric multiplicity p and A1 =
== Ap. Then. deflation works simi-
larly but with blocks instead of vectors:
B e R(n=p)x(n—p)

H is the householder transformation
2uul T -1

H:I—uTu,s.t.H:H = H ' is

symmetric and orthogonal. To make sure

Hxi = aey, we set: u = x1 +||x1|l2e; and

a=—|xq|l. .

16 Linear Algebra Basics

« (ABC)T = cTBTAT

i j ok
. 1,71 XMEZdet uip U1 uU13[=--
uz1  uz2  Uu33

* Diagonalisable means all algebraic
multiplicities equal to geometric mul-
tiplicity.

Algmul - number of times A appears.

* Geomul - number of eigenvectors of A.
Eigenvector and eigenval: Av = Av

Yu,v e R%.u, v¢6:>rk(uv )=1.

Rank i is the number of eigenvalues = 0.
det(A™1) = det(A)~!

YA € R™™, Complex A come in pairs
with their conjugates A.
 Cauchy-Schwarz: Y%, 7.|x-y| < |Ix||2lyll>

« If Ahas o, A then A~! has %, %

17 Gram Schmidt
The gram schmidt process iteratively

builds an orthonormal basis (ey,---,ey)
for the n-dimensional subspace generated
by v; € R for 1 < j < n as follows:

1. Tofind ey, let uy = vy, lete; =

u
2. To find ey, let up = vy — ” ”

Projy, vy) =
1/27(61 -1/2)61. Then ey = Hzigﬂ

3. To find e3, let uz = v3 —projul(V3) -
Projy,, (v3) =v3 —(e1 - v3)er — (e2- v3)ey.

Then e3 = 2

K andsoon ---




