
1 Vector & Matrix Norms
A vector norm on Rn is a real map ||·|| :
Rn→ R satisfying the following:
1. ∀x⃗ ∈ Rn.[x⃗ , 0⃗ =⇒ ||x⃗|| > 0].
2. ∀λ ∈ R.∀x⃗ ∈ Rn.[||λx⃗|| = |λ| ||x⃗||].
3. ∀x⃗, y⃗ ∈ Rn.[||x⃗ + y⃗|| ≤ ||x⃗||+ ||y⃗||].
For p > 0 the ℓp-norm of x⃗ is defined as:

||x⃗||p =
(∑n

i=1 |xi |
p
) 1
p

||x⃗||1 =
∑n

i=1 |xi |

||x⃗||2 =
√∑n

i=1 x
2
i

||x⃗||∞ =max1≤i≤n |xi |
Any vector norms || · ||a, || · ||b in Rn are
equivalent: ∃r, s > 0 s.t. ∀x⃗ ∈ Rn.[r ||x⃗||a ≤
||x⃗||b ≤ s||x⃗||a].
A matrix norm on Rm×n is a real map
|| · || : Rm×n→ R satisfying the following:

1. ∀A ∈ Rm×n.[A , 0 =⇒ ||A|| > 0].
2. ∀λ ∈ R.∀A ∈ Rm×n.[||λA|| = |λ| ||A||].
3. ∀A,B ∈ Rm×n.[||A+B|| ≤ ||A||+ ||B||].

In a sub-multiplicative matrix norm,
∀A ∈ Rm×n.∀B ∈ Rn×p .[||AB|| ≤ ||A|| ||B||].
We define ℓp-norms of a matrix as:

||A||1 =maxj ||aj ||1
||A||2 = σ1(A)

||A||∞ = ||AT ||1

||A||F =
√∑m

i=1
∑n

j=1 |aij |
2

A matrix norm on Rm×n is consistent on
vector norms ||·||a onRn and ||·||b onRm iff
∀A ∈ Rm×n.∀x⃗ ∈ Rn.[||Ax⃗||b ≤ ||A|| ||x⃗||a]. If
a = b then they are compatible. For a vec-
tor norm, the subordinatematrix norm is
∀A ∈ Rm×n, ||A|| =max{||Ax⃗|| : x ∈ Rn, ||x⃗|| =
1}. A vector norm is compatible with its sub-
ordinate matrix norm.
2 Linear Maps on Cn

The standard inner product is defined as
∀u⃗, v⃗ ∈ Cn.〈u,v〉 = uT v =

∑n
i=1 uivi .

3 Least Square Method

The orthogonal projection πU : Rm →
Rm is v⃗ 7→ πU (v⃗) = U(UTU )−1UT v⃗.
imA ⊥ kerAT , hence ∀x⃗ ∈ Rm, there
exist unique x⃗i ∈ imA, x⃗k ∈ kerA s.t.
x⃗ = x⃗i + x⃗k .

Suppose ∀x⃗ ∈ Rn, Ax⃗ = b⃗ has no solution
(i.e. b⃗ < imA). The Least Square Method
finds x ∈ Rn s.t. ||Ax⃗ − b⃗||2 is minimized.
This happens iff ||Ax⃗− b⃗i ||2 = 0, or Ax⃗ = b⃗i .

ATAx⃗ = AT b⃗ is the normal equation,
whose solution also solves the least
square problem. To find the best affine
map (straight line) Y = mX + c we solve

ATA

[
c
m

]
= AT Y where A =


1 X1
...

...
1 Xn

.

3.1 Linear Regression
Suppose we have a set of points (yi , a⃗i )
where yi ∈ R, a⃗i ∈ Rn. We want to find a
model of best fitwith params s0 ∈ R, s⃗ ∈ Rn

s.t. the sum of errors squared
∑m

i=1(s0+ s⃗ ·
a⃗i − yi )2 is minimized: ∀i.[s0 + s⃗ · a⃗i ≈ yi ].
To solve with least squares, let:

A =


1 a11 · · · a1n
...

...
. . .

...
1 am1 · · · amn

 , z⃗ =

s0
s1
...
sn

 ∈ R
n+1

∑m
i=1(s0 + s⃗ · a⃗i − yi )2 = ||Az⃗ − y⃗||22

4 Spectral Decomposition

A matrix Q ∈ Rn×n is orthogonal iff it
is invertible and Q−1 = QT . This im-
plies |detQ| = 1, & ∀ eigenvalues λ of
Q, |λ| = 1.

A matrix A ∈ Rn×n is symmetric iff
AT = A. Then, all eigenvalues of A are
real, and their algebraic and geometric
multiplicities are equal. Also, any eigen-
vectors with different eigenvalues are
orthogonal.

Any symmetric matrix A ∈ Rn×n can be
diagonalized as A = QDQT = QDQ−1,
where Q is orthogonal and D is diagonal
matrix of not necessarily distinct eigen-
values. To find the SD of A:
1. Find characteristic polynomial of A,

solve to find eigenvalues λi of A.
2. For each distinct λi , find correspond-

ing eigenspace Eλi .
3. For each Eλi , find orthonormal basis

( ⃗vλi1, ⃗vλi2, · · · , ⃗vλi dimEλi
).

4. The bases v⃗λi are columns of Q and
eigenvectors of A. Done!

5 Singular Value Decomposition

A symmetric matrix A ∈ Rn×n is pos-
itive semi-definite (non-negative eigen-
values) iff ∀x⃗ ∈ Rn.x⃗TAx⃗ ≥ 0, and pos-
itive definite (positive eigenvalues) iff
∀x⃗ ∈ Rn − {0}.x⃗TAx⃗ > 0.

For any A ∈ Rm×n, ATA ∈ Rn×n and
AAT ∈ Rm×m are symmetric & positive
semi-definite.

For any A ∈ Rm×n, the Singular Value
Decomposition of A is A =USV T , where
U ∈ Rm×m and V ∈ Rn×n are orthogonal,
and S = diag(σ1, · · · ,σp) and p =min(m,n)
where σ1 ≥ · · · ≥ σp ≥ 0 are the singular
values of A. This gives rise to properties:

• The rank r = rk(A) is equal to the num-
ber of positive singular values in S :
σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σp = 0.

• ||A||2 = σ1.

• The positive singular values of A are
the positive square roots of the eigen-
values of AAT or ATA.

• UTU = I .
To compute SVD ofA, we pick the smaller
of ATA and AAT and then:
1. Solve det(ATA−λI ) = 0 to get λ1, · · · .
2. Take sqrts to get σ1, · · · . Skip λi = 0.
3. Find vi by solving (ATA−λi I )vi = 0⃗.
4. vi are cols of V . MUST BE orthonormal.
5. Construct S from σi (same shape as A).
6. ∀σi , 0, ui = 1

σi
Avi .

7. ui are cols of U . If cols are missing use
gram schmidt or cross product.

If you pick AAT then calc U before V
in the same way. Also:
• rk(A) = num of σi , 0.
• ||A||2 = σmax(A).
• im(A) = span{u1, · · ·ur }, r = rk(A).

5.1 Principal Component Analysis
Assume A ∈ Rm×n represents m samples
of n-dim data. The principal axes of A
are the cols of V , and the cols of US (i.e.
σiui ) are the principal components of A.

wTATAw is maximised V Tw = e1, w =
v1. Assuming ||w||2 = 1.

A =
∑r

i=1 σiuiv
T
i . Then to max ||Ax||2, we

need to align x = v1 (since v1 corresponds
to largest σr . This maxes the contribu-
tions.
6 Generalized Eigenvectors
For A ∈ Rn×n, non-zero v ∈ Cn is a gener-
alized eigenvector of rank m (vm) with
assoc eigenvalue λ ∈ C iff (A − λI )mv = 0
and (A−λI )m−1v , 0.
If an eigenvalue λ has algebraic multi-
plicity k, there are k linearly independent
generalized eigenvectors associated with
λ. A ∈ Rn×n has n linearly independent
generalized eigenvectors - ∃ a basis of Cn

of generalized eigenvectors of A.

They always solve (A−λi I )vg = vi .

6.1 Jordan Normal Form (JNF)
A matrix is in JNF if it is in the form:

Jk1 (λ1) · · · 0
...

. . .
...

0 · · · Jkn (λn)


where Jki (λi ) is a jordan block of size ki :

λi 1 · · ·

0 λi
. . .

...
. . .

. . .


The algebraic multiplicity of λ is the sum
of the sizes of blocks with λ on the diago-
nal. The geometric multiplicity of λ is the
number of blocks with λ on the diagonal.

To find the JNF of A ∈ Rn×n:

1. Compute eigenvalues λi and their al-
gebraic multiplicity ai for A.

2. Find Eλi , the geometric multiplicities

gi , and eigenvectors v1i1, · · ·v
1
igi

.
3. If gi < ai , find ai − gi missing gener-

alized eigenvectors: ∀v1ij ∈ Cn asso-

ciated with λi , find all vkij ∈ Cn s.t.

(A−λi I )vkij = vk−1ij . (Gaussian elim.)
4. Change of basis B =

[v111, · · · , v
k11
11 , · · · , v11g1 , · · · , v

k1g1
1g1

, · · · ,

v1m1, · · · , v
km1
m1 , · · · , v1mgm , · · · , v

kmgm
mgm ].

5. Now J =


Jk11 (λ1) · · · 0

...
. . .

...
0 · · · Jkmgm

(λm)

.
6. B−1AB = J .

7 Cholesky Decomposition

A ∈ Rn×n is lower triangular iff ∀i <
j.Aij = 0; upper triangular iff ∀i >
j.Aij = 0.

Let A ∈ Rn×n be symmmetric. If it is
postive definite, all its diag elems are
> 0 and ∀i, j.max(Aii ,Ajj ) > |Aij |. If it
is positive semi-definite, all its diag el-
ems are ≥ 0 and ∀i, j.max(Aii ,Ajj ) ≥
|Aij |. As a consequence, the largest co-
efficient of A is on its diagonal. Also
the 1×1, · · · ,n×n matrices in the upper
left corner of A are also positive (semi-
)definite.

The cholesky decomposition of A ∈ Rn×n

is A = LLT where L is a lower triangular
matrix. A is positive semi-definite ⇔ ∃L ∈
Rn×n s.t. L is lower triangular and A =
LLT . A is positive definite ⇔ ∃L ∈ Rn×n

s.t. L is lower triangular and A = LLT and
∀i.Lii > 0. To find a CD:

1. Consider L =


l11 0 0 · · ·
l21 l22 0 · · ·
...

...
. . .

. . .

.
2. Solve A = LLT . Example for 3× 3:

l211 l11l21 l11l31
l11l21 l221 + l222 l21l31 + l22l32
l11l31 l21l31 + l22l32 l231 + l232 + l233


S is contained in the diagonal elems of L.

8 QR Decomposition

Let A ∈ Rm×n =
[
a1 · · · an

]
s.t.

a1, · · · , an are linearly independent. Ap-
ply gram schmidt to get (e1, · · · , en) s.t.
span{e1, · · · , en} = span{a1, · · ·an}. If we

let semi-orthogonal Q =
[
e1 · · · en

]
∈

Rm×n then A =QR with upper triangular:

R =


(e1 · a1) (e1 · a2) · · · (e1 · an)

0 (e2 · a2) · · · (e2 · an)
... 0

. . .
...

0 · · · 0 (en · an)


8.1 Householder Maps
Suppose a hyperplane P goes through 0⃗
with unit normal u ∈ Rm (P = {x ∈ Rm | u ·
x = 0}). The householder matrix Hu =
I − 2uuT induces reflection wrt P.
9 Convergence in R
Let (an)n∈N ∈ RN be a seq of reals and
l ∈ R. (an) converges to l (limn→∞ an = l)
iff ∀ϵ > 0.∃N ∈ N s.t. ∀n > N.|an − l | < ϵ.
(an) is a cauchy seq iff ∀ϵ > 0.∃N ∈ N s.t.
∀n,m > N.|an − am | < ϵ. (an) converges iff it
is cauchy.
9.1 Metric Spaces
A metric space is 〈S,d〉 where S , ∅ and
d : S × S→ R satisfies the following:

1. ∀x,y ∈ S , d(x,y) ≥ 0.
2. ∀x,y ∈ S , d(x,y) = 0⇔ x = y.
3. ∀x,y ∈ S , d(x,y) = d(y,x).
4. ∀x,y,z ∈ S , d(x,y) ≤ d(x,z) + d(z,y).

If V is a vector space equippied with the
norm || · ||, then 〈V ,(x,y) 7→ ||x − y||〉 is a
metric space.

If 〈S,d〉 is a metric space and (an) is a seq
in S , limn→∞ an = l iff ∀ϵ > 0.∃N ∈ N
s.t. ∀n > N.d(an, l) < ϵ. If (an) is converg-
ing, the limit is unique. (an) is cauchy iff
∀ϵ > 0.∃N ∈ N s.t. ∀n,m > N.d(an, am) < ϵ.
(an) converges iff it is cauchy.

〈S,d〉 is complete iff every cauchy seq in
S converges in S . For any k > 0, Rk with
ℓ1, ℓ2 or ℓ∞ is complete.
9.2 Fixed Point Equations
If S , ∅ and f : S→ S , then p ∈ S is a fixed
point of f if f (p) = p.

f : S → S is a contraction of S in 〈S,d〉
iff ∃ contraction constant 0 ≤ α < 1 s.t.
∀x,y ∈ S.d(f (x), f (y)) ≤ αd(x,y). If 〈S,d〉
is complete and f is a contraction of S , then
f has a fixed point.
10 Projectors

proju (v)≜ u·v
u·u u

The hermatian conjugate or ajoint of
A ∈ Cm×n is A∗: AT with all elems con-
jugated. Hermatian Matrix: A = A∗.

P is a projector iff P v= proju (v). Then:
• P = P2 (Reprojection does nothing.)
• (I −P) is also a projector.
• range(P) = null(I −P)⇒ S1.
• range(I −P) = null(P)⇒ S2.

1



• If S1 orthogonal to S2, then P is an or-
thogonal projector (not orth matrix).

P is an orth proj iff P = P∗. If Q̂ is an
orthonormal basis for range(P), then P =
Q̂Q̂∗. Also, Pu = uu∗. To find orthonormal
basis, gram schmidt.
11 Condition Numbers
The measure of the sensibility of a prob-
lem to small pertrubations in its input.
Let problem P take input d and some
pertrubation ϵ to give outputs s(d), s(d +
ϵ). Then the condition number κ(P):

κ(P) = maxϵ
||s(d)−s(d+ϵ)||

||ϵ||
The condition number measures the worst
case scenario. The relative condition num-
ber is defined in terms of relative diff:

κ(P) = maxϵ
||s(d)−s(d+ϵ)||

||ϵ||
||d ||
||s(d)||

When checking if a system is stable, we
check the bound of the condition num-
ber ∀d,ϵ. If it is bounded, it is sta-
ble. A large CN means a ill-conditioned
problem. A small CN means a well-
conditioned problem.
11.1 Matrix Condition Numbers
For a non-singular square matrix A, its
condition number κ(A) = ||A−1|| ||A||. If
the problem P is represented by the lin-
ear equation Ax = b, then κ(P) = κ(A).

The condition number of a non-square
matrix A is κ(A) = ||A†|| ||A||, where A† =
(ATA)−1AT is the pseudo-inverse of A.
11.2 Conditioning of a Problem
To decide if a condition number is
big enough to say its problem is ill-
conditioned, we say: for a condition num-
ber κ0, we lose ≈ log10(κ0) significant fig-
ures in accuracy.
12 Stability
Fundamental Theory of Floating Point
Arithmetic states all operations have rel
error ≤ ϵmachine. Define problem f : X →
Y and algorithm f̃ : X → Y . f (x) well
conditioned if small changes in x mean
small changes in f (x). f̃ is backwards
stable iff f̃ (x) = f (x̃)∧ ||x̃−x||||x|| = O(ϵmachine)
A backward stable algorithm gives exactly
the right answer to nearly the right question.
Flops & inner prod backwards stable.
Outer prod not. To find if F̃ is:

1. Show f̃ (x) is exact for perturbed x̃.
2. Verify rel err in x̃, x is ∝ ϵmachine.

e.g. inner product xT y =
∑n

i=1 xiyi :

• fl(xT y) =
∑n

i=1(xiyi )(1 + ϵi ), |ϵi | ≤ ϵm.
• fl(xT y) = x̃T y, so exact.

• |x̃i−xi ||xi |
= |xiϵi ||xi |

= |ϵi | ≤ ϵm = O(ϵm).

13 Systems of Equations
Basic gaussian elim splits A = LU , but
this fails if diagonal elems ≈ 0 - not back-
wards stable. The orders of rows is arbi-
trary so we can pivot using a orthonormal
permutation matrix P (1 non-zero entry
per col = 1). PA permutes rows, AP per-
muts cols. They change κ(A). This is sta-

ble iff ρ =
maxi,j |uij |
maxi,j |aij |

= O(1).

13.1 Gradient Optimisation
Func f : X → Z has level curve X 3
C = {x⃗ | f (x⃗) = c ∈ Z}, which can be pro-

jected onto X to visualize f . ∂f (x⃗)
∂u

=[
fx1 · · · fxm

]T
u = ∇f u . ∇2f = H =

fx1x1 · · · fx1xm
...

. . .
...

fxmx1 · · · fxmxm

. The grad ∇f (x⃗)

is the direction of the maximum rate of
change |∇f (x⃗)|.
Conjugate Gradient Method solves Ax =
b by solving minx f (x) = 1

2x
TAx − bT x

where ∇f (x) = Ax − b. It chooses dirs
p(k) s.t. they are conjugate: ∀k, j.k , j ⇒
〈p(k),p(j)〉 = p(k)TAp(j) = 0 using residuals
r(k) = −∇f = b −Ax(k) and step size α(k):

p(0) = −∇f = b −Ax(0)

p(k) = r(k)
∑

i<k
p(i)TAr(k)

p(i)TAp(i)
p(i)

α(k) = argmin
α

f (x(k) +α(k)p(k)) = p(k)T r(k)

p(k)TAp(k)

Converges in ≤ m iterations, as r(k)s are
orthogonal, form a basis for Rm, hence
r(m) = 0⃗.
14 Iterative Sol. to Linear Equations
Suppose we wish to solve Ax = b for A ∈
Rn×n and b ∈ Rn. Gaussian elim is O(n3),
which is impractical. Instead, split A =
G + R s.t. Ax = b ⇔ x = G−1b − G−1Rx.
Then if M = −G−1R and c = G−1b then
x = Mx + c. To solve this iteratively, we
must find a fixed point of f (x) =Mx + c.

Using fixed point theorem, we define seq
(xk ) for some starting x0 s.t. xk+1 =Mxk +
c.

Then for a consistent norm || · ||, (xk )
converges form any starting point x0 if
||M || < 1.

The rate of conv r ∝ − log10 ||M ||, so we
pick G, R s.t. −G−1R and G−1b are easy to
compute, and ||M || is small.
14.1 Common Splitting
Assume wlog that A has no 0s on the diag
(if not so, perform a basis change). Then
A =D+L+U whereD is the diagonal, and
L, U are the strict lower and upper trian-
gular parts of A.

14.2 Jacobi Method

If A = D + L + U , we say A = D + R
where R = L + U , then Ax = b ⇔ x =
Mx + c where M = −D−1R and c = D−1b.
Once again, consider seq (x(k)) defined as
x(k+1) =Mx(k) + c and x(0) ∈ Rn. Then:

Mx = −D−1Rx =


− 1
a1,1

∑
j,1 a1,jxj
...

− 1
an,n

∑
j,n an,jxj


As x(k+1) =Mx(k) + c, it comes that:

x
(k+1)
i = 1

ai,i
(bi −

∑
j,i ai,jx

(k)
j )

So to compute ith element of x(k+1), we
only need b, x(k), and the ith row of A,
which is great for parallelization.

The conv rate is max λ of D−1R.

14.3 Gauss-Seidel

Now, we split A = (D + L) +U s.t. Ax =
b ⇔ x = Mx + c where M = −(D + L)−1U
and c = (D + L)−1b. Once again, consider
seq (x(k)) defined as x(k+1) =Mx(k)+c and
x(0) ∈ Rn. We can rewrite that as:

(D +L)x(k+1) = −Ux(k) + b
m∑

j≤i ai,jx
(k+1)
j = −

∑
j>i ai,jx

(k)
j + bi

So to compute the ith elem of x(k+1), we
only need A, x(k), b and the kth elems
of x(k+1) for k < i . Since the update is
computed with more recent quantities, is
faster than jacobi. The conv rate is max λ
of L−1U .

14.4 Convergence

If A ∈ Rn×n is strictly row diagonally
dominant: ∀i.|aii | >

∑
j,i |aij |, then Jacobi

and Gauss-Seidel methods will converge.

When κ(A) is small, conv is faster. If κ(A)
is too big, it may even diverge.

A matrix A is irreducible if by symmet-
ric permutations of rows and columns (i.e.
if you swap row a with row b, you must
swap col a with col b), it can not take

the form
[
A11 A12
0 A22

]
where A?? and 0

are block matrices.

If A is weakly row diagonally dominant and
irreducible, Jacobi and G-S still converge.

15 Iteratively Finding Eigenvalues

Suppose we wish to find the eigenvalues
and eigenspaces of A ∈ Rn×n: we must
find roots of det(A − λI ) and do gaus-
sian elimination for each eigenvector - an
O(n4) problem.

15.1 Power Iteration
Let A ∈ Rn×n be a diagonalizable matrix
with λs of distinct mod (∀a,b.|λa | , |λb |).
Let λ ∈ R be dominant (∀i.|λ| ≥ |λi |). Con-
sider the seq (xk ) defined by xk+1 = Axk

||Axk ||
and x0 ∈ Rn \ {0}. Then:

xk −→
k→∞

v ||Axk || −→
k→∞

|λ|
Where v ∈ Rn is the normalized dominant
eigenvector. Here, the notion of conv is
not rigorous, so we say (xk ) converges to a
corresponding eigenspace. However:
• With random x0 is possible for the it.
to give 2nd dominant EVs. Make sure
there is at least one non-zero compo-
nent in the corresponding eigenspace.

• For matrix with multiple EVs of max
modulus, power it. will converge to a
linear combination of the correspond-
ing eigenvectors.

• conv may be slow if the dominant
eigenvector is not "very dominant".

• conv Rate ≈ λ2
λ1

.
15.2 Inverse Power Iteration
Let A ∈ Rn×n be a diagonalizable non-
singular matrix with eigenvalues of dis-
tinct modulus (∀a,b.|λa | , |λb |). This
means that ∀i.λi , 0 and µ is an eigen-
value of A iff µ−1 is an eigenvalue of A−1

with the same eigenvectors. So if λ is the
smallest eigenvalue of A, λ−1 is the dom-
inant eigenvalue of A−1.
Let λ ∈ R be the eigenvalue of the smallest
modulus. Consider the seq (xk ) defined by

xk+1 = A−1xk
||A−1xk ||

and x0 ∈ Rn \ {0}. Then:
xk −→

k→∞
v ||A−1xk || −→

k→∞
| 1λ |

Where v ∈ Rn is a normalized eigenvector
corresponding to λ. Conv rate ≈ λn−1

λn
.

15.3 Shifts
Let A ∈ Rn×n and s ∈ R. λ ∈ R is an
eigenvalue of A iff λ − s is an eigenvalue
of shifted A − sI with the same eigenvec-
tors. If A ∈ Rn×n is a diagonalizable ma-
trix with eigenvalues of distinct modu-
lus, and A− sI is non-singular (s is not an
eigenvalue of A), we can find the eigen-
value of A that is closest to s with inverse
power iterations on A− sI .
15.4 Rayleigh Quotient
For A ∈ Rn×n and x ∈ Rn\{0}, the rayleigh
quotient R(A,x) = xTAx

xT x
- an approx of an

eigenvalue directly and not its modulus.
15.5 Deflation
To find eigenvalues apart form the dom-
inant, we need to deflate the matrix A ∈
Rn×n to B ∈ R(n−1)×(n−1) that has the same
eigenvalues as A but the dominant one.

Let λ1, · · · ,λn by the eigenvalues of A s.t.
|λ1| ≥ · · · ≥ |λn | with corresponding eigen-
vectors v1, · · · , vn. Define H ∈ Rn×n as
a non-singular matrix s.t. Hx1 = αe1,

where α ∈ R \ {0} and e1 = [1,0, · · · ,0]T .
Then, we have:

HAH−1e1 =HA x1
α =H λ1

α x1 = λ1e1

Since the 1st col of HAH−1 is
[λ1,0, · · · ,0]T , we can write:

HAH−1 =
[
λ1 bT

0 B

]
Where B ∈ R(n−1)×(n−1). For any eigen-
value λ and corresponding eigenvector v:
Ax = λx⇔ HAx = λHx⇔ HAH−1(Hx) =
λHx. So λ is an eigenvalue of A iff it is an
eigenvalue of HAH−1.

Let λ2 be the second dominant eigenvec-
tor of A s.t. λ2 , λ1. The corresponding

eigenvector x2 =H−1
[
β
z2

]
with β = bT z2

λ2−λ1
and z2 is the dominant eigenvector of B.

We assumed that λ1 , λ2, or that the
dominant eigenvalue λ1 had geometric
multiplicity 1. Suppose that instead it
had geometric multiplicity p and λ1 =
· · · = λp . Then. deflation works simi-
larly but with blocks instead of vectors:
B ∈ R(n−p)×(n−p).

H is the householder transformation
H = I − 2uuT

uT u
, s.t. H = HT = H−1 is

symmetric and orthogonal. To make sure
Hx1 = αe1, we set: u = x1 + ||x1||2e1 and
α = −||x1||2.
16 Linear Algebra Basics
• (ABC)T = CT BTAT

• u⃗1 × u⃗2 = det

∣∣∣∣∣∣∣∣
i j k

u11 u12 u13
u21 u22 u23

∣∣∣∣∣∣∣∣ = · · ·
• Diagonalisable means all algebraic
multiplicities equal to geometric mul-
tiplicity.

• Algmul - number of times λ appears.
• Geomul - number of eigenvectors of λ.
• Eigenvector and eigenval: Av = λv
• ∀u,v ∈ R?.u,v , 0⃗⇒ rk(uvT ) = 1.
• Rank is the number of eigenvalues , 0.
• det(A−1) = det(A)−1.
• ∀A ∈ Rn×n, complex λ come in pairs
with their conjugates λ.

• Cauchy-Schwarz: ∀x⃗, y⃗.|x ·y| ≤ ||x||2||y||2
• If A has σ , λ then A−1 has 1

σ ,
1
λ .

17 Gram Schmidt
The gram schmidt process iteratively
builds an orthonormal basis (e1, · · · , en)
for the n-dimensional subspace generated
by vj ∈ Rm for 1 ≤ j ≤ n as follows:

1. To find e1, let u1 = v1, let e1 = u1
‖u1‖

.
2. To find e2, let u2 = v2 − proju1 (v2) =

v2 − (e1 · v2)e1. Then e2 = u2
‖u2‖

.
3. To find e3, let u3 = v3 − proju1 (v3) −

proju2 (v3) = v3 − (e1 · v3)e1 − (e2 · v3)e2.
Then e3 = u3

‖u3‖
, and so on · · ·.
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