1 Pipelining

We can pipeline each stage of instr ex-
ecution, allowing multiple instrs to be
in-flight simultaneously. This increases
throughput, not latency. Speedup reduced
by unbalanced stages, and fill / drain
time. Hazards prevent exec in designated
clock cycle:

* Structural: hardware can’t support
combination of instrs in simultaneous
exec. (e.g. FETCH / MEMORY overlap).
To fix introduce pipeline bubble (gap)

or instr buffer.
e Data: One instr uses anothers output.

Causes stalls. Fix with forwarding by

getting data directly from ALU.
e Control: branch pred failure. Re-

duce stall by guessing earlier in decode
stage.

2 Caches

A direct mapped 2N byte cache, with
block size 2M has 2N~M cache lines, with
each mem addr split into 3 fields:

e Uppermost 32 — N bits: cache tag.
Which mem block is stored in cache line?
* Lowest M bits: byte select. Which byte

in cache line is accessed?
¢ Middle N — M bits: index. Which cache
line to look in?

For C bytes, B blocksize and A addr size:

* log B bits for byte select.

* C = Bblocks stored.

* [=log(C + B) bits for cache index.
e A—I-logB bits for cache tag.

To access memory within the cache:

1. Use index to select cache line.
2. Compare tag with the tag in cache line.
3. If match, cache hit. Use byte select to

get the data.
4. If no match, cache miss. Fetch block

from main mem, update cache line, use
byte select to get the data.

Bad design, addrs spaced out by cache
size will overlap - associativity conflict.
An N-way set associative cache has N di-
rect mapped caches (ways) in parallel. To
access mem:

1. Use index to select 1 line per way.
2. Each tag is compared in parallel.
3. If a tag matches, cache hit ---

4. If no tag matches, cache miss ---

However, N comparators — complex
hardware — slower access time. Extra
MUX causes additional delay. In DM
cache, data comes before hit/miss signal, so
we can assume hit and cancel later. Issues:

* Block Placement: where to place block? af-
fects perf as determines how data is accessed.

Block Identification: As assoc increases, bits
for tag decreases.

Block Replacement: cache replacement policy.
Write Strategy: can write through (always
write to lower level mem, not solving cache
coherence) or write back (only write to lower
mem when replaced, requiring dirty bit, and
absorbing repeated writes).

Turing Tax is the overhead for the univer-

sality of a computer.
3 Dynamic Scheduling (Tomasulo)
Instr Parallelism allows instrs behind a

stall to proceed allowing ouf of order exec.
Order constrained by data, name & control
dependencies.

¢ Read—Write (RAW): true dep (data).

e Write«Read (WAR): anti dep (nane).
e Write«Write (WAW): output dep (nane).

In Tomasulo, regs have a tag indicating
which unit will produce its value. If
tag empty, reg is up to date. Each unit
has a reservation station which waits for
operands to be available then executes.
When an instr is issued:

1. ISSUE: Idle RS selected. If operands
are valid (reg has no tag), set them. Set
dest regs tag to RS ID. Overwrite if nec-
essary.

2. EXE%UTE: If operand becomes avail
on control bus with matching tag, set

it. When all avail, exec the instr.
3. WRITE RESULT: When result avail,

broadcast on control bus with RS ID.

The databus delivers operands, tags & in-
structions at issize. The control bus deliv-
ers results & tags at write result.

Effective parallelisation, building
dataflow dependency graph & regis-
ter renaming. However, many associative
stores & high wiring density of CDB.

3.1 Reorder Buffer

Tomasulo doesnt handle exceptions and

branch mispredictions. ~Add COMMIT
stage and maintain reorder buffer:

* On issue, allocate entry in ROB with
instrs’ dst reg, value or tag. ROB is a

8)ueue,}maintaining program order.
n writeback, update ROB entry.
On commit, process ROB in-order.

Committed registers (duplicates) are
updated. On interrupt flush ROB, reset
issue-side regs and restart fetching from
correct addr.

Can only consider misprediction until in-
str reaches ROB head, and can only pro-
cess 1 instr per cycle.

Register Update Unit (RUU) combines instr tracking
& reg updates in one structure. RUUs integrate more
functions, while ROBs simplify commit handling. In
ROB, regs and ROB entries have a tag, so every reg, ROB
entry & RS needs a comparator to monitor the DB. In
RUU, the tags are the ROB entry numbers, so the ROB
is indexed by the tag on the DB.

3.2 Speculative Memory

Store to Load Forwarding can forward
uncomitted stores to load from the same
addr. But by using computed addrs, we
must speculate. On misprediction we
flush & restart.

4 Branch Prediction

A branch predictor avoids control hazards
without stalls. A branch history table
uses PC (lower bits) to index table of n-bit
vals whether the last branch was taken.
In a 1-bit pred, aliasing possible & 2
misses in a loop.

In a n-bit pred, not-taken decrs, taken in-
crs. > 2" predicts taken, and vice versa.
A G-Selector uses global branch history
reg (BHR), an n-bit record of the last n
branch outcomes, to index a BHT. These
learn which global history patterns corre-
late with a branch being taken.

4.1 Target Prediction

A branch target buffer maps PCs to their
predicted next PC, indexed by PC (lower
bits), tagged with PC (higher bits), avoid-
ing aliasing. Each entry has branch PC
tag, predicted PC & extra state bits. Ac-
cessed in parallel with the instr cache in
the fetch stage. Updated on branch com-
mit. At decode, check if pred was cor-
rect; if not override PC for fetch stage
and squash (disable) mem and writeback
stages of mispredicted instr.

To store return addrs, we can either use a
stack or special reg.

5 Cache & Memory

Average Memory Access Time (AMAT):

Hit Time + Miss Rate x Miss Penalty

In multilevel cache, miss penalty is AMAT
of the next level cache cache.

5.1 Miss Rate

Cache misses can be compulsory (initial
miss), capacity, conflict & coherence. In-
creasing block size would decrease miss
rate, but too large will have data load
overhead.

In victim caching, has a small fully assoc
cache between main cache and mem. This
stores evictions from main cache, signifi-
cantly reducing conflict misses.

In a skewed assoc cache, each way has a
different hash function, reducing conflict
misses, reducing assoc, more predictable
perf, but overhead in implementing LRU.
A stream buffer can prefetch by fetch-
ing missed blocks along with several next
blocks in mem into a small FIFO buf.
SB is checked in parallel with cache. A
multi-way SB has multiple SBs with dif-
ferent datastreams.

5.2 Miss Penalty

We can either:

e Write Through: all writes propagate down
cache levels (multilevel inclusion). Each
block has valid bit. Can always evict any
block. Faster to evict, slower writes, inco-
herency.

Write Back: writes to mem on evict. Dirty
bit & valid bit used. Faster, lower bandwidth,
better tolerance to slow memory, but more
complex.

We can either:

* Write Allocate: on miss, load into cache,
then write. Better for temporal locality.

e Write Around: on miss, write directly to
mem. Better for poor temporal locality.

A write buffer between cache and mem
can reduce miss penalty, at the cost of
having to be read in parallel with the
mem. Store 2 — 8 lines, and can coalesce
writes to the same block.

In early restart, on miss, begin fetching
missed block from mem. When the tag of
the requested word is returned, resume
execution. Remaining data is fetched si-
multaneously. This reduces miss penalty,
not having to wait for the entire block to
be fetched before resuming execution. In
critical word first, fetch requested word
first, then the rest of the block.

However, we can get a race condition if an-
other load to the same block occurs before
the rest of the block has been fetched. To
fix this, divide cache line into sectors each
with their own valid bit. We allocate in
lines and deliver data in sectors.

A non-blocking cache supplies data
while a miss is serviced. Hit under miss
lowers penalty by working during miss
service. Miss under miss lowers penalty by
allowing overlapping miss servicing. This
significantly increases complexity and re-
quires multiple mem banks.

5.3 Hit Time

Splitting pipeline stages involves cache
accesses, allows more regular cache ac-
cess, but with a higher latency. To sup-
port this:

e Banking: divide cache into independently
accessible banks, mapped by lower order bits
or hash funcs.

e Duplicate the cache.

¢ Multiport RAM: support simultaneous ac-
cesses, with two wordlines per row and two
bitlines per column. Expensive and complex.

5.4 Address Translation

PIPT % VIPT
CcPY CcPU
VIRT VIRT VIRT
i (728 = [CACHE]
PHYS VIRT !1 PHYS
F T F
PHYS PHYS PHYS
[MEM] [MEM] [MEM]

e Phys Index, Phys Tag (PIPT): requires TLB
lookup before cache access, adding latency.
Virt Index, Virt Tag (VIVT) allows faster
cache access, reducing hit time. Leads to syr-
onyms & needs complex coherence handling.
Virt Index, Phys Tag (VIPT): data and tag
accessed in parallel with TLB lookup, reduc-
ing hit time & avoiding synonyms. Requires
careful design to ensure cache size and page size
compatible.

Virt addr space divided into pages &
mem divided into page frames, allowing
non-contiguous malloc, reducing frag-
mentation & allowing easier swapping of
pages.

A virt addr is divided into a wvirt
page number (VPN) (indexes page ta-
ble, maps into PPN) & page offset (byte
within page).

The translation lookaside buffer is a
small cache of the PT, allowing for faster
addr trans, reducing PT overhead. Often
a highly associative cache.

Homonym: virt addr +— many phys addr in
multiple procs. Virt indexed cache leads to
many copies of the same data in cache, causing
coherence issues. Avoid by flushing cache on
context switches, or include PID in cache tag.
Synonym: many virt addr + phys addr. In
a virt indexed cache, virt addr is cached twice
under diff phys addr, causing coherence issues.
Avoid by forcing synonyms to have same index
bits in the cache (page colouring: multiple free
lists of phys pages).

In VIPT, if index has only phys addrs, we
can access tag in parallel with trans. This
limits cache size to page size x assoc:

PHYS HIT
po[LL]—>[COMPARATOR

T Ll R 1]

5.5 DRAM
Stores data in square array of cells:

Row addr selects row to access via wordline.
. Cells discharge.

Cell state latched by per-col sense amps.

. Col addr selects data for output via bitline.
. Data written back to selected row.

G N =

Since row is latched, subsequent accesses to the
same row are faster (page mode). To access a
diff row, first precharge the bitlines, then acti-
vate the new row. This means row access cycle

time is larger than the row access time, as the
data needs to be written back after it is read. Af-
ter a while the charge leaks, so every cell must
be refreshed every ~ 64ms. This is managed by
a microcontroller in the DRAM module. DRAM
is unavailable during refresh, so we should aim
to reduce it.

Error correction adds redundancy via
parity/ECC bits, using hamming codes.
Memory upsets can be caused by updat-
ing surrounding cells with row hammer-
ing, something fixed by error correction or
adaptive refreshing.

We could achieve mem parallelism with
parallel addressing & parallel data trans-
fer by having many mem banks. Each
bank can be accessed independently, al-
lowing many operations to occur simul-
taneously, increasing bandwidth & reduc-
ing latency.

6 Side Channel Vulnerabilities

Side Channel Vulterabilities expose an-
other thread’s state/data by observing its
effect on the system state. Exfiltration:

e Prime & Probe: attacker primes L2
cache by filling > 1 sets with data. Af-
ter victim executed, attacker probes the
state of L2 by timing accesses, seeing

which sets were evicted.
¢ Evict & Time: attacker runs victim, es-

tablishing base exec time. It then evicts
a line of interest and reruns victim.
Variations in exec time indicate which

cache lines were accessed.
¢ Flush & Reload: relies on shared virt

mem. Attacker flushes a line of inter-
est. After victim execution, attacker
reloads line by touching it, measuring
time taken. A fast reload indicates vic-
tim touched this line, reloading it.

For exploitation, there must be a shared state
affected by the execution of both attacker and
victim:

* Single core: cache level, TLB, branch predic-
tor, prefetchers, physical rename regs, dis-
patch ports.

e Single NUMA domain: mem controller.

» Cores may share caches, interconnect, etc.

To execute the victim code, the attacker

must either (1) perform a syscall, (2) re-

lease a lock, (3) run simultaneously, (4)

call as a function (testing language secu-

rity).

Historically, to limit context switch cost, OS

stored copies of its page addr trans alongside

each proc, avoiding TLB flushes. However, this
allowed spectre attacks to access kernel data.

Kernel Addr Space Layout Randomisa-

tion (KASLR) randomises placement of

code and data, making spectre attacks
guess where the data it wants is stored.

This is not foolproof.

Kernel Addr Space Isolation (KASI)
flushes TLB each time kernel is entered,
mitigating spectre attacks despite perf
impact. Overcome by Spectre 2.

7 Multithreading

¢ Regular issue has reduced utilisation due to
stalls and dependencies.

Superscalar issue: more perf but less util.
Chip MultiProcessing (CMP) adds more
cores, increasing util but not 1-thread perf.
Fine Grained Multithreading (FGMT) ro-
tates between threads every cycle to reduce
stalls, but intra-thread dependencies still
cause stalls.

Simultaneous MultiThreading (SMT) al-
lows instrs from many threads to be issued
in the same cycle, increasing utilisation.

In SMT, n PCs and n reg decode maps:

e Resource sharing, individual threads slower.
¢ Thread contention (cache/TLB thrashing, ---).
¢ Need to manage private resources.

¢ SMT must schedule fairly.

« Side channel threat.

SMT threads exploit mem-sys parallelism
by allowing many threads to issue mem
ops simultaneously (latency hiding). In-
creasing SMT threads has overhead due
to handling more regs (reg renaming),
more complex scheduling, and increased
contention.

8 Vectors & SIMD

Arithmetic Intensity is the ratio of FLOP
to bytes of mem accessed. Sparse kernels
have low Al The roofline model:

¢ Memory-Bound Region: perf limited by
mem bandwidth (low arithmetic intensity).

¢ Compute-Bound Region: perf limited by
CPU'’s peak computational throughput.

Vec Instr Sets contain vec regs allowing
exec in parallel lanes, and pred regs for
masking ops. To ensure compiler vec-
torises: (1) make iterations a multiple of
vecreg lengths, (2) ensure not overlap-
ping pointers, (3) ensure no loop carried
dependencies, (4) use SIMD intrinsics di-
rectly.

Single Instr Multiple Threads (SIMT) is
a parallel arch allowing many threads to
exec the same instr simultaneously on dif-
ferent data.

If loop body has indirection (e.g.
Blind[i]]), then we need a vec gather
instr, less efficient than load as data
may not be continguous. Predication &
masking allow i fs in the loop.

¢ Vector Pipelining execs vec instrs serially
on a static pipeline. Words are forwarded
to next functional unit (FU) as soon theyre
ready, forming a pipelined chain.

¢ UOB Decomposition breaks down complex
vec instrs into many micro-ops that can be ex-
ecd in parallel across many exec units. Can
be used when the provided vec length ex-
ceeds the hardware vec length. Each n-wide
vec is split into 1= m-wide vecs, where m is
the hardware vec length. They are committed
together.

9 GPUs

GPUs have many cores, with many FUs
implementing SIMD model. Less cache
per core, fast context switches and no
branch pred. Contain many processor de-
vices (streaming multiprocessors, SM),
using FGMT to run many warps per SM.

* GPU warp = CPU thread
¢ GPU thread = CPU lane

Inside each SM there is a:

e Multithread Issuer (MT): selects warp
to issue in each cycle (FGMT).

* Explictly programmed scratchpad
mem, warps on the same SM share this.

* L1 Cache with no coherency protocol.

Each chip has many DRAM channels, each of
which has its own L2 Cache (so no cache co-
herency protocol is needed between SMs).

CUDA is a C ext for programming serial
CPU code and parallel GPU kernels.

* Thread group = thread block (1D, 2D, 3D).

* Thread blocks = thread grid (1D, 2D, 3D).
* Threads in the same block share mem.

If threads in a warp diverge then each
branch path is execd serially, disabling
threads not on that path (predication). Af-
ter this, reconverge.

9.1 SIMD vs SIMT

¢ MPI_Comm_rank: Get rank of current process.
e MPI_Send: Send message to another process.
¢ MPI_Recv: Recv message from another proc.
¢ MPI_Finalize: Terminate MPI environment.
¢ MPI_Bcast: Broadcast msg to all procs.

¢ MPI_Reduce: Reduce values from all procs.

e MPI_AllReduce: Reduce values and dis-

tribute result to all processes.

OpenMP is casy but leads to unintended
bugs. MPI is explicit, but more complex.
10.2 Snooping Cache Coherency
Cache incoherency: multiple cores have
local caches, one core updates a mem-
loc, other cores have stale copies in their
caches. We need to know where to find the
most recent data, and when data is stale.
The goal is SC. Idea: invalidate other
caches when a store occurs, forcing other
cores to suffer a read miss and fetch the
updated data from mem. Here, a snoop-
ing cache controller sits between a core’s
cache and the bus, monitoring all bus
transactions and checking them against
the tags of its cache.

10.3 Berkley Protocol

Each cache line can be (1) invalid, (2)
valid - clean, potentially shared, un-
owned, (3) shared dirty - modified,
shared, owned, (4) dirty modified, un-
shared, owned. On a read miss:

1. Broadcast request on the bus.

SIMD SIMT

2. If another line is Dirty/Shared Dirty, sup-

1 thread per lane SIMD per thread

Adjacent threads ac-
cess adjacent data
for spatial locality.

Adjacent loop iters
access adjacent data
for spatial locality.

ply data and sets its state to Shared Dirty,
and ours to Valid.

3. Otherwise, fetch data from mem, set our
cache line to Valid.

Load instr can re- SIMD vector load has
sultin a diffaddrac- | access to adjacent lo-
cessed by each lane. cations.

Coalesced loads with | Gather instrs can

On a write hit, if Valid/Shared Dirty,
set invalidation is sent & local state set

adjacent accesses
are very fast.

fetch diff addrs per
lane, but often serial.

to Dirty. On a write miss, same as read
miss then all other caches Invalidate their

Branch coherence Branch predictability

copies, and our cache line becomes Dirty.

10 Multicore & Cache Coherency
Power is the critical constraint of perf:

* Dynamic Leakage when signals change.

» Static Leakage when gates are powered on.
Dennard Scaling states as transistors
get smaller, dynamic power gets smaller.
Now, static leakage dominates power.
More efficient to have many parallel units at
low clock and low voltage!

To reduce power, (1) turn of units, FUs, or
cores when unused, (2) dynamic voltage
and clk regulation, (3) many cores lower
clk, (4) turbo mode.

10.1 Programming Models

OpenMP: shared-mem model, with com-
piler pragmas specifying parallel regions:
Use #pragma omp parallel
MPI: API for parallel programming using
message passing. Has following funcs:

for.

e MPI_Init: init MPI env.
* MPI_Comm_size: Get number of processes.

Since every bus transaction checks cache tags,
there could be contention between bus and CPU
accesses. To avoid this:

Duplicate set of tags for L1 to allow checks
in parallel with CPU accesses.

Use L2 to filter invalidations. Only works
with multi-level inclusion. Many systems force
cache inclusivity, making this not an option.

10.4 Memory Models
For atomics, we split two mem access in
one instructions into two:

¢ Load Linked: load value from mem addr.
e Store Conditional: store to mem only if no
updates have occured since last LL.

With this we can build a lock:

1try:

2 LI R2, #1 ; Load 1 into R2

3 lock:

4 LW R3, O(R1) ; Load lock value

5 BNEZ R3, lock ; If lock != 0, repeat
6 EXCH R2, O(R1) ; Exch R2 with mem at R1
7 BNEZ R2, try ; If prev != 0, repeat

10.5 Interconnets

Snooping cache coherency protocols rely
on a bus, a bottleneck for high core
counts. To scale, we distribute DRAM
around the system using Non Uniform
Memory Architecture (NUMA).

With an interconnect network, each
node has its own mem. Each node has
a directory that tracks the state of every
block in every cache. The directory could
track information:

e per mem block: simple but more traffic.
e per cache block: complex but less traffic.

Directory allows finding most recent
copy of data (by wusing a linked list stric-
ture). This could be a major bottleneck.

¢ ccNUMA: each node has a fragment of
DRAM, every phys addr has unique home
node.

¢ COMA: each node has a fragment of DRAM,
data can migrate between nodes adaptively.

¢ NUCA: cache is distributed, so access latency
is non-uniform.

