1 Designing Concurrent Programs

A proc is one application. A thread is
a single seq of instrs in a proc. A proc
may have multiple threads. Each proc
has its own mem space, threads share the
mem space of parent proc. Parallelism =
many physical cores executing threads si-
multaneously. Concurrency means many
threads making progress over time, but
not necessarily simultaneously.

» Safety: Bad thing never happens. Vio-

lated by finite computation.
e Liveness: Good thing happens eventu-

ally. Cant be violated by finite comp.

Critical Sec cant be concurrent. Am-

, . _ 1-thread exec time
dahl’s Law: Speedup = n-thread exec time

1 P where p is % parallelisable.
1-p+4;
2 Read Modify Write (RMW)
Atomic instr that reads old val and up-
dates mem loc. Weak RMW supports 2
threads. Strong RMW (CAS) supports n.
3 Sequential Consistency (SC)
Only strong mem model, inefficient. Exe-
cuted in program order and interleaved ar-
bitrarily.
Assume ConWHiLE C € Com and thread
T € Tid. A concurrent prog P € Prog 2
Tid — Com. Shared mem M € Mem £
Loc — Val. Store map S € SMap = Tid —
Store and store s € Store £ Reg — Val. An
SC configuration is (P, S, M).

An SC transition label may be:

or

€ silent transition.

(R, x,v) read v from x.

(W, x,v) write v to x.

(U, x,v9,v,) RMW at x from v, to vy,.
(U,x,v,, L) failed RMW at x holding v,,.

3.1 Sequential Transitions

Cl,s—l>c C{,s'

€
C]ZCZfSLc Cl}Cé.S’ skip;C,s —¢ C,s
eval(s, B) = true

B?2Cy:Cp, s—»c €18

0B:Cs ScB?(C(B:C)

eval(s,E) =v s" =s[lar> v]

i skip, s

€
a:=E,s > skip,s’

s(a)=v s’ =slarsv]
(W,x,v) (Rx,v)
X:=a5s — ¢ skip,s a:=x,s — ¢ skip,s’

eval(s,E) =v vy =vo+v s’ =slar>vy)
Ux,v9,v17)
-

a:=FM(x,E),s ¢ skip,s”

eval(s,E¢) =ve Ve =vo eval(s,Ep)=vy s =slars1]

Ux,v0,v5)
a:=CcAS(x,Ee,Ep),s g ¢ skip,s”
eval(s,Ee) =ve ve#vy s’ =s[lar>0]

(Ux,vp,L)
a:=CAS(x,Eg, Ep), s —

c skip,sl

3.2 Program Transitions

P(t)=C S(t)=s CsbCs
P/ =Plt>C’] ' =S[t>5']

(12 S
P,S—pP’S

3.3 Storage Transitions

M(x)=v
:(R,x,v)
M -y M

M’ =M[x v]
T:(W,x,v)
M -y

M’

M(x)=vy M’ =M][xvy]
7:(U,x,v9,v,
Uxown))

M(x) =vo
7:(U,x,v0, L
M =g "M

Finally:

P,sifp prs M5k M

P,S,M— P’,S’,M’

P55, s
P,S,M—P’,S",M

Then —* is the reflexive transitive closure
of —. Now we can define:

* Initial memory Mgy £ Ax.0

+ Initial store sy £ Aa. O

e Initial store map Sy £ At. S0,

* Terminated program PSklp = At.skip

» Initial SC config Py £ (P, Sy, M)

The SC trace of P is an eval path from
Py —* (Pskip,S, M) where (S, M) is the SC
outcome of P.

P is deterministic if it has exactly 1 SC
trace. Confluent if all traces lead to the
same outcome. Determinacy implies con-
fluence, not vice versa. In general, P is nei-
ther.

4 Total Store Ordering (TSO)

TSO allows reordering of adjacent instrs:

* WR reordering on different locs.
* WR reordering on same locs provided
the value of W is inlined into R.

Each 7 has private store buffer, a FIFO
queue temporarily holding writes before
they become globally visible.

Memory fence instrs prevent reordering
by locking the thread (bad!) until store
buffer empty. Instead, use RMW that also
flushes SB and writes directly to mem.

Now give each thread a SB:
B € BMap £ Tid — Buff
b € Buff £ Seq(WLab)
WLab £ {(W,x,v) | x € Loc,v € Val}
A TSO config is(P,S,M, B). Then:

4.1 Sequential Transitions
Same as SC with:

mfence,s —¢ skip,§

4.2 Storage Transitions

B(t)=b b’ =b-(Wx,v) B =Blt—1b’]
T:(W,x,v)
M,B —py

B(t)=b get(M,b,x)=v

7:(R,x,v)
M,B —uy

M,B’

M,B
b=by-(Wx,v)-byA

if 3by,by. ﬂ [WXV sz]

get(++) 2 v
M(x) otherwise

B(t)=0 M(x)=vy M’ =M][x+>vy]

T:(U,x,vp,v
M,B (—>,‘,’1 ")M',B

B()=0 M(x)=vo B(r) =0
M,BT:(U’_X'}VJ'L) M MBI MB
B(r)=(Wx,v)-b M’ =M[x>v] B =B[risb]

M,B 55, M/, B’
4.3 Combining Transitions

P,ST—:Z”U P’,s’ M, Bﬂ)m M, B’
P,S,M,B— P’,S’,M,B P,5,M,B—P,S,M’,B’

P,sﬂp P8 MBIk, M B
P,S,M,B—P’,5",M’,B’

=%, My, So, Pskip as before, initial
buffer map By £ Ar.0. A TSO trace is
(P, S, Mo, Bo) =" (Psip,S, M, By).

5 Declarative Semantics

Candidate executions are represented as

graphs with nodes of events and relations

for po, rf, etc. An event (n,t,£) is:

* n € Nunique event ID.
* 7eTid UTO} (0 for initial writes).
o € =€ non empty label.

5.1 Relational Algebra
Given a set A and relations r,7’ C A x A:
- [A] £ ((a,a) | a € A} identity relation.
« dom(r) 2 (a|3b.(a, by € r} domain.
« mg(r) £ {a| 3b.(b,a) € 1} range.

=L 2 ((b,a) | (a,b) € r} inverse.
. r’ £ {(a,c)|3b.((a,b) € r A{b,c) € 1)} composition.
B rU [dom(r))] reflexive closure.
i+l &

r)Urng(r

UIEN 7" where 70 =randr
closure.
C A

2 131 transitive
+1? : iti
)* reflexive transitive closure.

def
« irreflexive(r) & fa.(a,a) € r irreflexivity.

def
« acyclic(r) & irreflexive(r) acyclicity.

* typ(£) € {RW,U} denotes type of label.
Similarly, val,(€) and valy, (€).

tld(e) 27 and lab(e 2°¢ for event e.

Ag = {a € A|tid(A % init events.

Ay aeAItld) T’s events.

A 2 {a € A|loc(A) = x} events on loc x.
LN S 1N (Ag x Ag) restriction of r to T.
= rﬂ(A x Ay) restriction of r to loc x.
ri2(abyer Ft.d = tid(b) v tid(a) =

0} restriction of r to 1nternal edges.

s resr r \ri restriction to external edges.
o 7 |10c2 [(a, by € r | loc(a) = loc(b)) restric-
tion of r to edges on the same location.

Let G = (E,po,rf) be a candidate exec
graph:

¢ E is a finite set of events.

e Program Order po £ (Jrerid POr) U
(Eg x (E\ Eg)) is a strict total order on E.

e Reads From rf on E s.t. rf~! is a func-
tion and Y{(w,r) € rf.Jw = r Atyp(w) €

{W,U} A typ(r) € {R,U} A loc(w) = loc(r) A
val,(w) = valy(r)].

« GE2E, poﬁpo G11—1L

e G.R2{rekE|typ(r) =R} read events.

e GW2|wek|typ(w) W} write events.

* G.U=2 lucE|typ(u) = U} update events.

« GRU2G.RUG.U read/update events.

* GWU 2 GWUG.Uwrite/update events.

Coherence is per-location SC, whereas
release-acquire also allows mutual exclu-
sion with message passing with observed
writes.

e SC: (1) respect po, (2) respect rf, (3) al-
ways read latest write.

e SC-ALT: (1) Gis complete, (2) mo where
read-before rb means if a read reads
from a write, any later write in mo must

come after the read.

e TSO: (1) total on everything but reads
(can be reordered), (2) respects po, ex-
cept for write-read, (3) respects rf, (4)
always read from latest write.

e TSO-ALT: (1) G is complete, (2) inter-
nal rf and rb respect po, (3) mo where
preserved program order ppo relates all
non-write-read pairs in po, (4) rf and
rb must respect mo.

e COH: (1) G is complete, (2) respects po
per loc, (3) respects rf per loc with no
interleaving writes.

e COH-ALT: (1) G is complete, (2) re-
spects mo on the same loc.

e RA: (1) G is complete, (2) respects
hbr, happens-before, relating events
ordered by po or rf on the same loc.

6 C11 Semantics
We give each memory access mode:

Read RMElna,rixacq,sc}
Write Wm€ina,rixrel,sc}

.
o RMW Ume{rlx acq,rel,acq-rel,sc}

« Fences fmelacq,rel,acq-rel,sc}

mod(e) is the mode of event e. Mode
strength is ordered as na C rlx C
acq,rel C acq-rel C sc. For events E:

EZ™ 2 (e e E|m=mod(e) Vm = mod(e)}

G is Cll-consistent if it is (1) com-
plete, (2) respects a defined mo with
synchronises-with sw defined as:

swi ([WUg“el] U [Fgrel];po); rft;

([wu7269] U po [F2<4))
Which expands to:

y é[wugrel];l,1+;[RU2acq]
[WU;rel]; rf+;po;[FQacq]
[Fgrel];po; rr+;[RUQacq]
[F2re!]spo; r i3 po; [F22¢9]

(a,by € G.race is a Cl1-race if:

* a= b distinct events.
* loc(a):t loc(b) different locs.

o {typ(a), typ(b)} N{W,U} = 0 > 1 is write.
* nae {mo (a),mod(b)} > 1 is non-atomic.
* {(a,b),(b,a)} N G.hb =0 not related by hb.
Then G is Cl1-racy and program P has
undefined behaviour.
7 Concurrent Objects
A history is a seq of invocation and re-

sponse events. Assuming SC, we can
project a concurrent history to a sequen-
tial one by only looking at the non-
overlapping method calls (the bits pro-
tected by the locks). Assume each method
takes effect instantaneously at some point
between its invocation and response, if
this is possible, the object is linearizable.

To linearizablability, find linearization
point for each method call, s.t. the seq
history formed by these points satisfies
the sequential specification. If this can’t
be done, the object is not linearizable. I
a history, pick any point between invocation
and response as the linearization point. H is
linearisable if extended to G by append-
ing or discarding pending invocations s.t.
G =S and »5C—yg.

A q.enq(x) for invocation, A q:void for
response. Legal if sequential per T and re-
spects the seq spec of the object. Equiv-
alent (=) if per-thread projections are
the same. Method call m(precedes m;
(mg —p my) if its response is before the
others invocation. Otherwise, they are
overlapping. —p is a partial order, and
total if sequential.

H is linearisable iff Vx € Obj.H | x is lin-
earisable (composability thrm). H is se-
quentially consistent if by extending to
G, G = S where S is legal & sequential. SC
is not composable.

4 progress conditions for conc objs:

.

Deadlock free: some thread acquiring a lock

will succeed. .
Starvation free: every thread acquiring a lock

will succeed.
Lock free: some thread calling a method will

complete.
Wait free: every thread calling a method will

completre.

8 C++: Threads & Locks
A mutex from std: :mutex can be lock and unlock.
We can make a scoped lock with a destructor:

1class ScopedLock {

2 ScopedlLock(std::mutex& mtx) mtx_(mtx) {
3 mtx_.lock();

4}

5 // End of lifetime, not GC:

6 ~ScopedLock() { mtx_.unlock(); }

7}

Also impl as std: :scoped_lock<std: :mutex>. This
is Resource Acquisition as Initialisation (RAII).

e 14
A race condition is non-deterministic behaviour. A

data race occurs when (1) distinct threads access a
memloc, (2) at least one is a write, (3) at least one is
atomic, (4) not ordered by synchronisation. This is
undefined behaviour - program has no semantics.
A std::unique_lock similar to scoped, but allows
relocking, deferred locking and ownership transfer.
condition variable:

1#include <condition_variable>

2std::condition_variable cond_;
3 cond_.notify_one(); // Wake one thread
4 cond_.notify_all(); // Wake alll threads

To wait on a condition variable:

1. Associate a mutex with the condvar.
2. Lock mutex with std: :unique_lock.
3. Call wait(mutex, predicate).

For example, a locking queue:

1class LockedQueue {

2 LockedQueue(size_t s) { contents_.resize(s); }
3 void enq(int element) {

4 std::unique_lock<std::mutex> lock(mtx_);

5 not_full_.wait(lock, [this]() -> bool {

6 return count_ < contents_.size(); });

7 contents_[tail_] = element;

8 tail_ = (tail_ + 1) % contents_.size();

9 count_++;

10 not_empty_.notify_one(); // Notify waiting deq
11 }

12 int deq() {

13 std::unique_lock<std::mutex> lock(mtx_);

14 not_empty_.wait(lock, [this]() -> bool {

15 return count_ > 0; });

16 int result = contents_[head_];

17 head_ = (head_ + 1) % contents_.size();

18 count_--;

19 not_full_.notify_one(); // Notify waiting enq
20 return result;

21 }

22 };

9 C++: Atomics
We can perform RMWs on atomics:

1#include <atomic>
2void store(T value);
3T load(); // Atomic load

4T exchange (T value) // Atomic RMW

5bool compare_exchange_strong(T& exp, T desired);
6 bool compare_exchange_weak (T& exp, T desired);

/| Atomic store

Weak version may fail spuriously (behave as if com-

pare failed even if it succeeded). There is also
{add,sub,and,or,xor}

We can use a memory order in store/load

e memory_order_relaxed: allow store buffering.

e memory_order_release: only stores.

. : only loads.

* memory_order_seq_cst: sequential consistency.

Under release-acquire, SB flushed only when loadmg 25 }

with pending stores on same location.

1
2
3

4
5
6
7
8
9
0
1

1

12
13
15
16
17

18
19

1
2
3

© N> o s

14

1
2
3

4
5
6
7
8

18
19
20
21
22
E

10 C++: Spinlocks

class ExpBackoffSpinlock {
public:
ExpBackoffSpinlock ()
void lock() {
const int kMinBackofflters
const int kMaxBackofflters
int it kMinBackofflters;
while (lock_bit_.exchange(true, mem_ord_acq)) {
do {
for (int i 0;
__mm_pause(); // CPU Pause
std::min(it = 2, kMaxBackofflters);
(lock_bit_.load(mem_ord_rlx));

lock_bit_(false) {}
4;
1 << 10;

i< it; i++)
it =
} while

}

}

void unlock(){lock_bit_
private:

std::atomic<bool> lock_bit_;

bs

Ticket lock avoids starvation by serving tickets in order:

.store(false,mem_ord_rel)}

class TicketLock {
public:

TicketLock () next_(0), now_serving_(0) {}
void lock() {
const unsigned my_ticket = next_.fetch_add(1);
while (now_serving_.load() != my_ticket);
void unlock() {
now_serving_.store(now_serving_.load() + 1);
}
private:
std::atomic<unsigned> next_;
std::atomic<unsigned> now_serving_;
b
11 C++: Futexes

The futex syscall works on userspace data:
e futex_wait(int *p, int v) returnsif *p = v, otherwise

adds thread to a wait queue p.
e futex_wake(int xp, int n) wakes nthreads waiting on

queue p.

To implement a mutex, 3 states: 0 - lock free, 1 -
locked no waiters, 2 - locked with waiters. On lock,
compare exchange state 0 to 1:

¢ On success, lock is acquired and has no waiters.

e On failure, state either 1 or 2. Set to 2 and call futex_wait.
When unlocking, state is either 1 or 2:

e If1, set to 0 and return.
e If2,set to 0 and call futex_wake.

class MutexSmart {
public:

MutexSmart () state_(0) {}
void lock() {
int old_value compare_exchange (0, 1);
if (old_value == 0) return;
do {
if (old_value == 2 || compare_exchange(1, 2)
'=0) {
syscall (SYS_futex, reinterpret_cast<ints>(&
state_), FUTEX_WAIT, 2, nullptr, nullptr, 0);
}
old_value = compare_exchange(0, 2);
} while (old_value != 0);
void unlock() {
if (state_.exchange(0) == 2) {
syscall (SYS_futex, reinterpret_cast<intx>(&
state_), FUTEX_WAKE, 1, nullptr, nullptr, 0);
}
b
private:
int compare_exchange(int exp, int desired) {
state_.compare_exchange_strong(exp, desired);
return expected;
}
std::atomic<int> state_;

12 Haskell Concurrency
An MVar is a mutable variable that is either empty
X) or full (O). All operations on MVar are atomic:

1 newMVar a -> I0 (MVar a) -- Create full MVar
2 newEmptyMVar I0 (MVar a) -- Create empty MVar
3 takeMVar -- Block till full, remove & return

4 putMVar -- Block till empty then write

5 readMVar -- Block till full then read

We can do a thread join:

1printThenJoin s handle do
print s

putMVar handle () -- Thread is done

hSetBuffering stdout NoBuffering
handlel <- newEmptyMVar

2

3

4

5main do

6

7

8 handle2 <- newEmptyMVar

9 forkIO (printThenJoin "I am thread 1" handlel)
10 forkIO (printThenJoin "I am thread 2" handle2)
11 takeMVar handlel
12 takeMVar handle2
13 putStrLn "Both threads done"
14 return ()
We can do a mutex:
1 thread -> MVar () -> 10 ()
2 thread mutex = do
3 putMVar mutex () -- Lock
4 -- Critical section
5 takeMVar mutex -- Unlock
6 main = do

7 mutex <- newEmptyMVar
8 forkIO (thread mutex ...)
9 forkIO (thread mutex ...)
To replicate a monadic action n times we can do replicateM
Monad m => Int -> m a -> m [a].

13 Unbounded Channels
’—[J; Channel

e
Item Men

Men

Value \/a/ue
Consumers read from the rcud end and producers write to
the write end.

1 data Channel a = Channel (MVar (Stream a)) (MVar (

Stream a))

2 type Stream a = MVar (Item a)

3 data Item a = Item a (Stream a)
4

5 newChannel = do

6 emptyStream <- newEmptyMVar

7 readEnd <- newMVar emptyStream

8 writeEnd <- newMVar emptyStream

9 return (Channel readEnd writeEnd)

readChannel (Channel readEnd _) do
readEndStream <- takeMVar readEnd
(Item value remainder) takeMVar readEndStream
putMVar readEnd remainder
return value

writeChannel (Channel _ writeEnd) value
newEmptyStream <- newEmptyMVar
wEndStream <- takeMVar writeEnd
putMVar wEndStream (Item value newEmptyStream)
putMVar writeEnd newEmptyStream

<-

do

14 Datarace Detection

The vector clock algorithm uses a vector clock, map-
ping Tid — N where each logical clock is an integer
> 0 incremented when thread releases a mutex. Al-

gorithm state is given ! (C,L,R,W) where:

¢ C:Tid — VC maps threads to their vector clocks.

e L:Locks — VC maps locks to their vector clocks.

¢ R:Loc — VC maps mem locs to the VC of their last read.

¢ W:Loc — VC maps mem locs to the VC of their last write.

A thread’s clock C; = C(t) represents what thread ¢

knows about the logical clocks of other threads:

e C(t)is my clock, always positive.

e Yu=zteTid.Cy (u)meanslknowusclockls>L ().

e When locking, I get info on logical clocks of flncads that pre-
viously held the lock.

A lock’s clock L, = L(m) means the last thread

to release m knew t’s logical clock was > Ly,(t)

when it released the mutex. A loc’s clock Ry

R(x) means the last thread to read x knew t’s log-

ical clock was > Ry(t) when it read. Initially,
4 ,Am. L, Ax. 1, Ax. 1), then:
14.1 Shared Memory Rules
WxC Ct R’ =R[x> Ry [t Ct(t)]]
rd(t,x)
(C,L,R W)y —5(C,L,R", W)
Wy ECt RyCCr W/ =W[xs Wyt C(t)]]
wr(t,x)
(C,L,R, Wy —5(C,L, R, W)

14.2 Lock Rules

C'=C[t (CtULy)]

(LR wy-2cam,

(C",LLRW)

L' =L[m— Ct] C'=C[tr inct(Cy)]

rel(t,m)
(C,L,R,W)

(C,L”,R,W)

14.3 Datarace Rules

Fu. Wy (1) > Cg (1)
rd(t,x)

(C,L,R, W) ——— WriteReadRace(u, t, x)

Ju. Wy (1) > Ct(u)

wr(t,x
(C,L,R, W) -(——)> WriteWriteRace(u, £, X)

¢ The bottom VCis L ={0,0,---,0}.
¢ Thereis a partial order on VC: V] C V, & V1.V (t) < Va(t).
e Tojoin VCs: V] L V) = {Vt.max(Vy(t), Va(t))}.
¢ Anincrement function inc¢(V) =V [t V(t)+1].
Although this correct, it is inefficient. Better ones exist but
arent correct.
15 Rust Concurrency
Rust mutexes own their data. An atomically refer-
ence counted (Arc) object has a non-owning ref to T
and ref counter x:
e Cloning ARC gomts to the same obj, incrementing x.
. Droppm% decrements x. When x = 0, obj dropped.
+ x manipulated with atomics, so its thread safe.
let mut data Vec::<u32>::new();
for _ in 0..max { data.push(1); }
let arc_t1 Arc::new(Mutex::new(data));
let arc_t2: Arc<Mutex<Vec<u32>>> = arc_t1.clone();
let res_arc Arc::new(AtomicU32::new(0));
let res_arc_t1 res_arc.clone();
let res_arc_t2 res_arc.clone();
let t1 thread::spawn(move || {
let mut r: u32 0;
for i in 0..(max /[2)
r += arc_t1.lock().unwrap()[il];

12}
res_arc_t1.

1)

let t2

Ordering::Relaxed);

(I

fetch_add(r,

= thread::spawn(move

let mut r: u32 0;

for i in (max / 2)..max {
r += arc_t2.lock().unwrap()[i];

19}
20 res
21});
22 t1.join().unwrap();

23 t2. join().unwrap();

24 println! ("{}", res_arc.load(Ordering::

_arc_t2.fetch_add(r, Ordering::Relaxed);

Relaxed));

