
1 Designing Concurrent Programs
A proc is one application. A thread is
a single seq of instrs in a proc. A proc
may have multiple threads. Each proc
has its own mem space, threads share the
mem space of parent proc. Parallelism =
many physical cores executing threads si-
multaneously. Concurrency means many
threads making progress over time, but
not necessarily simultaneously.

• Safety: Bad thing never happens. Vio-
lated by finite computation.

• Liveness: Good thing happens eventu-
ally. Cant be violated by finite comp.

Critical Sec cant be concurrent. Am-
dahl’s Law: Speedup = 1-thread exec time

n-thread exec time
or 1

1−p+ p
n

where p is % parallelisable.

2 Read Modify Write (RMW)
Atomic instr that reads old val and up-
dates mem loc. Weak RMW supports 2
threads. Strong RMW (CAS) supports n.
3 Sequential Consistency (SC)
Only strongmemmodel, inefficient. Exe-
cuted in program order and interleaved ar-
bitrarily.
Assume ConWhile C ∈ Com and thread
τ ∈ Tid. A concurrent prog P ∈ Prog ≜
Tid → Com. Shared mem M ∈ Mem ≜
Loc→ Val. Store map S ∈ SMap ≜ Tid→
Store and store s ∈ Store≜ Reg→ Val. An
SC configuration is 〈P ,S,M〉.
An SC transition label may be:

• ϵ silent transition.
• (R,x,v) read v from x.
• (W,x,v) write v to x.
• (U,x,vo , vn) RMW at x from vo to vn.
• (U,x,vo ,⊥) failed RMW at x holding vo .

3.1 Sequential Transitions

C1 , s
l→c C

′
1 , s
′

C1;C2 , s
l→c C1;C

′
2 , s
′ skip;C,s

ϵ→c C,s

eval(s,B) = true

B?C1 : C2 , s
ϵ→c C1 , s

m B : C,s
ϵ→c B?(C;m B : C) : skip, s

eval(s,E) = v s′ = s[a 7→ v]

a := E,s
ϵ→c skip, s′

s(a) = v

x := a, s
(W,x,v)
→ c skip, s

s′ = s[a 7→ v]

a := x,s
(R,x,v)
→ c skip, s′

eval(s,E) = v vn = vo + v s′ = s[a 7→ vo ]

a := FAA(x,E), s
(U,x,vo ,vn)→ c skip, s′

eval(s,Ee ) = ve ve = vo eval(s,En) = vn s′ = s[a 7→ 1]

a := CAS(x,Ee ,En), s
(U,x,vo ,vn)→ c skip, s′

eval(s,Ee ) = ve ve , vo s′ = s[a 7→ 0]

a := CAS(x,Ee ,En), s
(U,x,vo ,⊥)→ c skip, s′

3.2 Program Transitions

P(τ) = C S(τ) = s C,s
l→c C

′ , s′

P′ = P[τ 7→ C′ ] S′ = S[τ 7→ s′ ]

P ,S
τ:l→p P′ ,S′

3.3 Storage Transitions

M(x) = v

M
τ:(R,x,v)
→m M

M′ =M[x 7→ v]

M
τ:(W,x,v)
→m M′

M(x) = vo M′ =M[x 7→ vn]

M
τ:(U,x,vo ,vn)→m M′

M(x) = vo

M
τ:(U,x,vo ,⊥)→m M

Finally:

P ,S
τ:ϵ−→p P′ ,S′

P ,S,M −→ P′ ,S′ ,M
P ,S

τ:l−→p P′ ,S′ M
τ:l−→m M′

P ,S,M −→ P′ ,S′ ,M′

Then →∗ is the reflexive transitive closure
of→. Now we can define:

• Initial memory M0 ≜ λx.0
• Initial store s0 ≜ λa.0
• Initial store map S0 ≜ λτ.s0
• Terminated program Pskip ≜ λτ.skip
• Initial SC config P0 ≜ 〈P ,S0,M0〉

The SC trace of P is an eval path from
P0→∗ 〈Pskip,S,M〉where 〈S,M〉 is the SC
outcome of P.
P is deterministic if it has exactly 1 SC
trace. Confluent if all traces lead to the
same outcome. Determinacy implies con-
fluence, not vice versa. In general, P is nei-
ther.
4 Total Store Ordering (TSO)
TSO allows reordering of adjacent instrs:

• WR reordering on different locs.
• WR reordering on same locs provided
the value of W is inlined into R.

Each τ has private store buffer, a FIFO
queue temporarily holding writes before
they become globally visible.

Memory fence instrs prevent reordering
by locking the thread (bad!) until store
buffer empty. Instead, use RMW that also
flushes SB and writes directly to mem.

Now give each thread a SB:

B ∈ BMap≜ Tid→ Buff

b ∈ Buff≜ Seq〈WLab〉

WLab≜ {(W,x,v) | x ∈ Loc, v ∈ Val}

A TSO config is 〈P ,S,M,B〉. Then:

4.1 Sequential Transitions
Same as SC with:

mfence, s
MF→c skip, s

4.2 Storage Transitions

B(τ) = b b′ = b · (W,x,v) B′ = B[τ 7→ b′ ]

M,B
τ:(W,x,v)
−→m M,B′

B(τ) = b get(M,b,x) = v

M,B
τ:(R,x,v)
−→m M,B

get(· · · )≜

v if ∃b1 , b2 .
b = b1 · (W,x,v) · b2∧

∄v′ .
[
(W,x,v′ ) ∈ b2

]
M(x) otherwise

B(τ) = ∅ M(x) = vo M′ =M[x 7→ vn]

M,B
τ:(U,x,vo ,vn)−→m M′ ,B

B(τ) = ∅ M(x) = vo

M,B
τ:(U,x,vo ,⊥)−→m M,B

B(τ) = ∅

M,B
τ:MF−→m M,B

B(τ) = (W,x,v) · b M ′ =M[x 7→ v] B′ = B[τ 7→ b]

M,B
τ:ϵ−→m M′ ,B′

4.3 Combining Transitions

P ,S
τ:l−→p P′ ,S′

P ,S,M,B−→ P′ ,S′ ,M,B

M,B
τ:l−→m M′ ,B′

P ,S,M,B−→ P ,S,M′ ,B′

P ,S
τ:l−→p P′ ,S′ M,B

τ:l−→m M′ ,B′

P ,S,M,B−→ P′ ,S′ ,M′ ,B′

→∗, M0, S0, Pskip as before, initial
buffer map B0 ≜ λτ.∅. A TSO trace is
〈P ,S0,M0,B0〉 →∗ 〈Pskip,S,M,B0〉.
5 Declarative Semantics
Candidate executions are represented as
graphs with nodes of events and relations
for po, rf, etc. An event 〈n,τ,ℓ〉 is:

• n ∈ N unique event ID.
• τ ∈ Tid∪ {0} (0 for initial writes).
• ℓ , ϵ non empty label.

5.1 Relational Algebra
Given a set A and relations r, r′ ⊆ A×A:
• [A]≜ {〈a,a〉 | a ∈ A} identity relation.

• dom(r)≜ {a | ∃b.〈a,b〉 ∈ r} domain.

• rng(r)≜ {a | ∃b.〈b,a〉 ∈ r} range.
• r−1 ≜ {〈b,a〉 | 〈a,b〉 ∈ r} inverse.
• r;r′ ≜ {〈a,c〉 | ∃b.

(
〈a,b〉 ∈ r ∧ 〈b,c〉 ∈ r′

)
} composition.

• r? ≜ r ∪ [dom(r)∪ rng(r)] reflexive closure.
• r+ ≜ ∪

i∈N ri where r0 ≜ r and ri+1 ≜ r;ri transitive
closure.

• r∗ ≜ (r+)? reflexive transitive closure.

• irreflexive(r)
def
⇔ ∄a.〈a,a〉 ∈ r irreflexivity.

• acyclic(r)
def
⇔ irreflexive(r+) acyclicity.

• typ(ℓ) ∈ {R,W,U} denotes type of label.
Similarly, valr(ℓ) and valw(ℓ).

• tid(e)≜ τ and lab(e)≜ ℓ for event e.
• A0 ≜ {a ∈ A | tid(A) = 0} init events.
• Aτ ≜ {a ∈ A | tid(A) = τ} τ’s events.
• Ax ≜ {a ∈ A | loc(A) = x} events on loc x.
• rτ ≜ r ∩ (Aτ ×Aτ ) restriction of r to τ.
• rx ≜ r ∩ (Ax ×Ax) restriction of r to loc x.
• ri ≜ {〈a,b〉 ∈ r | tid(a) = tid(b)∨ tid(a) =
0} restriction of r to internal edges.

• re≜ r \ ri restriction to external edges.
• r |loc≜ {〈a,b〉 ∈ r | loc(a) = loc(b)} restric-
tion of r to edges on the same location.

Let G = 〈E,po,rf〉 be a candidate exec
graph:

• E is a finite set of events.
• Program Order po ≜ (

∪
τ∈Tid poτ ) ∪

(E0 × (E \E0)) is a strict total order on E.
• Reads From rf on E s.t. rf−1 is a func-
tion and ∀〈w,r〉 ∈ rf.[w , r ∧ typ(w) ∈
{W,U} ∧ typ(r) ∈ {R,U} ∧ loc(w) = loc(r) ∧
valw(w) = valr(r)].

• G.E≜ E, G.po≜ po, G.rf≜ rf
• G.R≜ {r ∈ E | typ(r) = R} read events.
• G.W≜ {w ∈ E | typ(w) = W} write events.
• G.U≜ {u ∈ E | typ(u) = U} update events.
• G.RU≜ G.R∪G.U read/update events.
• G.WU≜ G.W∪G.U write/update events.

Coherence is per-location SC, whereas
release-acquire also allowsmutual exclu-
sion with message passing with observed
writes.

• SC: (1) respect po, (2) respect rf, (3) al-
ways read latest write.

• SC-ALT: (1)G is complete, (2) mowhere
read-before rb means if a read reads
from a write, any later write in momust
come after the read.

• TSO: (1) total on everything but reads
(can be reordered), (2) respects po, ex-
cept for write-read, (3) respects rf, (4)
always read from latest write.

• TSO-ALT: (1) G is complete, (2) inter-
nal rf and rb respect po, (3) mo where
preserved program order ppo relates all
non-write-read pairs in po, (4) rf and
rbmust respect mo.

• COH: (1) G is complete, (2) respects po
per loc, (3) respects rf per loc with no
interleaving writes.

• COH-ALT: (1) G is complete, (2) re-
spects mo on the same loc.

• RA: (1) G is complete, (2) respects
hbra happens-before, relating events
ordered by po or rf on the same loc.

6 C11 Semantics
We give each memory access mode:

• Read Rm∈{na,rlx,acq,sc}
• Write Wm∈{na,rlx,rel,sc}
• RMW Um∈{rlx,acq,rel,acq-rel,sc}
• Fences Fm∈{acq,rel,acq-rel,sc}

mod(e) is the mode of event e. Mode
strength is ordered as na < rlx <
acq,rel< acq-rel< sc. For events E:

Ewm ≜ {e ∈ E |m =mod(e)∨m<mod(e)}

G is C11-consistent if it is (1) com-
plete, (2) respects a defined mo with
synchronises-with sw defined as:

sw≜
(
[WUwrel]∪ [Fwrel];po

)
;rf+;(

[WUwacq]∪ po; [Fwacq]
)

Which expands to:

sw≜
[
WU
wrel] ;rf+; [RUwacq][

WU
wrel] ;rf+;po; [Fwacq][

F
wrel] ;po;rf+; [RUwacq][
F
wrel] ;po;rf+;po; [Fwacq]

〈a,b〉 ∈ G.race is a C11-race if:

• a , b distinct events.
• loc(a) , loc(b) different locs.
• {typ(a), typ(b)} ∩ {W,U} , ∅ ≥ 1 is write.
• na ∈ {mod(a),mod(b)} ≥ 1 is non-atomic.
• {〈a,b〉,〈b,a〉}∩G.hb = ∅ not related by hb.

Then G is C11-racy and program P has
undefined behaviour.
7 Concurrent Objects
A history is a seq of invocation and re-
sponse events. Assuming SC, we can
project a concurrent history to a sequen-
tial one by only looking at the non-
overlapping method calls (the bits pro-
tected by the locks). Assume eachmethod
takes effect instantaneously at some point
between its invocation and response, if
this is possible, the object is linearizable.

To linearizablability, find linearization
point for each method call, s.t. the seq
history formed by these points satisfies
the sequential specification. If this can’t
be done, the object is not linearizable. In
a history, pick any point between invocation
and response as the linearization point. H is
linearisable if extended to G by append-
ing or discarding pending invocations s.t.
G � S and→G⊆→S .

A q.enq(x) for invocation, A q:void for
response. Legal if sequential per τ and re-
spects the seq spec of the object. Equiv-
alent (�) if per-thread projections are
the same. Method call m0 precedes m1
(m0 →H m1) if its response is before the
others invocation. Otherwise, they are
overlapping. →H is a partial order, and
total if sequential.
H is linearisable iff ∀x ∈ Obj.H | x is lin-
earisable (composability thrm). H is se-
quentially consistent if by extending to
G, G � S where S is legal & sequential. SC
is not composable.
4 progress conditions for conc objs:
• Deadlock free: some thread acquiring a lock

will succeed.
• Starvation free: every thread acquiring a lock

will succeed.
• Lock free: some thread calling a method will

complete.
• Wait free: every thread calling a method will

completre.
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8 C++: Threads & Locks
A mutex from std::mutex can be lock and unlock.
We can make a scoped lock with a destructor:

1 class ScopedLock {

2 ScopedLock(std::mutex& mtx) : mtx_(mtx) {

3 mtx_.lock();

4 }

5 // End of lifetime, not GC:

6 ~ScopedLock() { mtx_.unlock(); }

7 };

Also impl as std::scoped_lock<std::mutex>. This
is Resource Acquisition as Initialisation (RAII).
A race condition is non-deterministic behaviour. A
data race occurs when (1) distinct threads access a
memloc, (2) at least one is a write, (3) at least one is
atomic, (4) not ordered by synchronisation. This is
undefined behaviour - program has no semantics.
A std::unique_lock similar to scoped, but allows
relocking, deferred locking and ownership transfer. A
condition variable:

1 #include <condition_variable >

2 std::condition_variable cond_;

3 cond_.notify_one(); // Wake one thread

4 cond_.notify_all(); // Wake alll threads

To wait on a condition variable:
1. Associate a mutex with the condvar.
2. Lock mutex with std::unique_lock.
3. Call wait(mutex, predicate).

For example, a locking queue:
1 class LockedQueue {

2 LockedQueue(size_t s) { contents_.resize(s); }

3 void enq(int element) {

4 std::unique_lock<std::mutex> lock(mtx_);

5 not_full_.wait(lock, [this]() -> bool {

6 return count_ < contents_.size(); });

7 contents_[tail_] = element;

8 tail_ = (tail_ + 1) % contents_.size();

9 count_++;

10 not_empty_.notify_one(); // Notify waiting deq

11 }

12 int deq() {

13 std::unique_lock<std::mutex> lock(mtx_);

14 not_empty_.wait(lock, [this]() -> bool {

15 return count_ > 0; });

16 int result = contents_[head_];

17 head_ = (head_ + 1) % contents_.size();

18 count_--;

19 not_full_.notify_one(); // Notify waiting enq

20 return result;

21 }

22 };

9 C++: Atomics
We can perform RMWs on atomics:

1 #include <atomic>

2 void store(T value); // Atomic store

3 T load(); // Atomic load

4 T exchange(T value) // Atomic RMW

5 bool compare_exchange_strong(T& exp, T desired);

6 bool compare_exchange_weak(T& exp, T desired);

Weak version may fail spuriously (behave as if com-
pare failed even if it succeeded). There is also T

fetch_{add,sub,and,or,xor}(T value);.
We can use a memory order in store/load:
• memory_order_relaxed: allow store buffering.
• memory_order_release: only stores.
• memory_order_acquire: only loads.
• memory_order_seq_cst: sequential consistency.
Under release-acquire, SB flushed only when loading
with pending stores on same location.

10 C++: Spinlocks
1 class ExpBackoffSpinlock {

2 public:

3 ExpBackoffSpinlock() : lock_bit_(false) {}

4 void lock() {

5 const int kMinBackoffIters = 4;

6 const int kMaxBackoffIters = 1 << 10;

7 int it = kMinBackoffIters;

8 while (lock_bit_.exchange(true, mem_ord_acq)) {

9 do {

10 for (int i = 0; i < it; i++)

11 __mm_pause(); // CPU Pause

12 it = std::min(it * 2, kMaxBackoffIters);

13 } while (lock_bit_.load(mem_ord_rlx));

14 }

15 }

16 void unlock(){lock_bit_.store(false,mem_ord_rel)}

17 private:

18 std::atomic<bool> lock_bit_;

19 };

Ticket lock avoids starvation by serving tickets in order:
1 class TicketLock {

2 public:

3 TicketLock() : next_(0), now_serving_(0) {}

4 void lock() {

5 const unsigned my_ticket = next_.fetch_add(1);

6 while (now_serving_.load() != my_ticket);

7 }

8 void unlock() {

9 now_serving_.store(now_serving_.load() + 1);

10 }

11 private:

12 std::atomic<unsigned> next_;

13 std::atomic<unsigned> now_serving_;

14 };

11 C++: Futexes
The futex syscall works on userspace data:
• futex_wait(int *p, int v) returns if *p , v, otherwise

adds thread to a wait queue p.
• futex_wake(int *p, int n)wakes n threads waiting on

queue p.

To implement a mutex, 3 states: 0 - lock free, 1 -
locked no waiters, 2 - locked with waiters. On lock,
compare exchange state 0 to 1:
• On success, lock is acquired and has no waiters.
• On failure, state either 1 or 2. Set to 2 and call futex_wait.

When unlocking, state is either 1 or 2:
• If 1, set to 0 and return.
• If 2, set to 0 and call futex_wake.

1 class MutexSmart {

2 public:

3 MutexSmart() : state_(0) {}

4 void lock() {

5 int old_value = compare_exchange(0, 1);

6 if (old_value == 0) return;

7 do {

8 if (old_value == 2 || compare_exchange(1, 2)

!= 0) {

9 syscall(SYS_futex, reinterpret_cast <int*>(&

state_), FUTEX_WAIT, 2, nullptr, nullptr, 0);

10 }

11 old_value = compare_exchange(0, 2);

12 } while (old_value != 0);

13 }

14 void unlock() {

15 if (state_.exchange(0) == 2) {

16 syscall(SYS_futex, reinterpret_cast <int*>(&

state_), FUTEX_WAKE, 1, nullptr, nullptr, 0);

17 }

18 }

19 private:

20 int compare_exchange(int exp, int desired) {

21 state_.compare_exchange_strong(exp, desired);

22 return expected;

23 }

24 std::atomic<int> state_;

25 }

12 Haskell Concurrency
An MVar is a mutable variable that is either empty
(X) or full (O). All operations on MVar are atomic:

1 newMVar :: a -> IO (MVar a) -- Create full MVar

2 newEmptyMVar :: IO (MVar a) -- Create empty MVar

3 takeMVar -- Block till full, remove & return

4 putMVar -- Block till empty then write

5 readMVar -- Block till full then read

We can do a thread join:
1 printThenJoin s handle = do

2 print s

3 putMVar handle () -- Thread is done

4

5 main = do

6 hSetBuffering stdout NoBuffering

7 handle1 <- newEmptyMVar

8 handle2 <- newEmptyMVar

9 forkIO (printThenJoin "I am thread 1" handle1)

10 forkIO (printThenJoin "I am thread 2" handle2)

11 takeMVar handle1

12 takeMVar handle2

13 putStrLn "Both threads done"

14 return ()

We can do a mutex:
1 thread :: ... -> MVar () ... -> IO ()

2 thread ... mutex ... = do

3 putMVar mutex () -- Lock

4 -- Critical section

5 takeMVar mutex -- Unlock

6 main = do

7 mutex <- newEmptyMVar

8 forkIO (thread ... mutex ...)

9 forkIO (thread ... mutex ...)

To replicate a monadic action n times we can do replicateM
:: Monad m => Int -> m a -> m [a].
13 Unbounded Channels

Consumers read from the read end and producers write to
the write end.

1 data Channel a = Channel (MVar (Stream a)) (MVar (

Stream a))

2 type Stream a = MVar (Item a)

3 data Item a = Item a (Stream a)

4

5 newChannel = do

6 emptyStream <- newEmptyMVar

7 readEnd <- newMVar emptyStream

8 writeEnd <- newMVar emptyStream

9 return (Channel readEnd writeEnd)

10 readChannel (Channel readEnd _) = do

11 readEndStream <- takeMVar readEnd

12 (Item value remainder) <- takeMVar readEndStream

13 putMVar readEnd remainder

14 return value

15 writeChannel (Channel _ writeEnd) value = do

16 newEmptyStream <- newEmptyMVar

17 wEndStream <- takeMVar writeEnd

18 putMVar wEndStream (Item value newEmptyStream)

19 putMVar writeEnd newEmptyStream

14 Datarace Detection
The vector clock algorithm uses a vector clock, map-
ping Tid→ N where each logical clock is an integer
≥ 0 incremented when thread releases a mutex. Al-
gorithm state is given by 〈C,L,R,W 〉 where:
• C : Tid→ VCmaps threads to their vector clocks.
• L : Locks→ VCmaps locks to their vector clocks.
• R : Loc→ VCmaps mem locs to the VC of their last read.
• W : Loc→ VCmaps mem locs to the VC of their last write.

A thread’s clock Ct = C(t) represents what thread t
knows about the logical clocks of other threads:
• Ct (t) is my clock, always positive.
• ∀u , t ∈ Tid.Ct (u) means I know u’s clock is ≥ Ct (u).
• When locking, I get info on logical clocks of threads that pre-

viously held the lock.
A lock’s clock Lm = L(m) means the last thread
to release m knew t’s logical clock was ≥ Lm(t)
when it released the mutex. A loc’s clock Rx =
R(x) means the last thread to read x knew t’s log-
ical clock was ≥ Rx(t) when it read. Initially,
〈{inc0(⊥), · · · ,incN−1(⊥)},λm.⊥,λx.⊥,λx.⊥〉, then:
14.1 Shared Memory Rules

Wx v Ct R′ = R [x 7→ Rx [t 7→ Ct (t)]]

〈C,L,R,W 〉
rd(t,x)
−−−−−−−−→ 〈C,L,R′ ,W 〉

Wx v Ct Rx v Ct W ′ =W [x 7→Wx [t 7→ Ct (t)]]

〈C,L,R,W 〉
wr(t,x)
−−−−−−−−→ 〈C,L,R,W ′ 〉

14.2 Lock Rules

C′ = C [t 7→ (Ct tLm)]

〈C,L,R,W 〉
acq(t,m)
−−−−−−−−−−→ 〈C′ ,L,R,W 〉

L′ = L [m 7→ Ct ] C′ = C [t 7→ inct (Ct )]

〈C,L,R,W 〉
rel(t,m)
−−−−−−−−−−→ 〈C′ ,L′ ,R,W 〉

14.3 Datarace Rules
∃u.Wx (u) > Ct (u)

〈C,L,R,W 〉
rd(t,x)
−−−−−−−−→WriteReadRace(u, t,x)

∃u.Wx (u) > Ct (u)

〈C,L,R,W 〉
wr(t,x)
−−−−−−−−→WriteWriteRace(u, t,x)

• The bottom VC is ⊥ = {0,0, · · · ,0}.
• There is a partial order on VC: V1 v V2⇔∀t.V1(t) ≤ V2(t).
• To join VCs: V1 tV2 = {∀t.max(V1(t),V2(t))}.
• An increment function inct (V ) = V [t 7→ V (t) + 1].
Although this correct, it is inefficient. Better ones exist but
arent correct.
15 Rust Concurrency
Rust mutexes own their data. An atomically refer-
ence counted (Arc) object has a non-owning ref to T

and ref counter x:
• Cloning ARC points to the same obj, incrementing x.
• Dropping ARC decrements x. When x = 0, obj dropped.
• x manipulated with atomics, so its thread safe.

1 let mut data = Vec::<u32>::new();

2 for _ in 0..max { data.push(1); }

3 let arc_t1 = Arc::new(Mutex::new(data));

4 let arc_t2: Arc<Mutex<Vec<u32>>> = arc_t1.clone();

5 let res_arc = Arc::new(AtomicU32::new(0));

6 let res_arc_t1 = res_arc.clone();

7 let res_arc_t2 = res_arc.clone();

8 let t1 = thread::spawn(move || {

9 let mut r: u32 = 0;

10 for i in 0..(max / 2) {

11 r += arc_t1.lock().unwrap()[i];

12 }

13 res_arc_t1.fetch_add(r, Ordering::Relaxed);

14 });

15 let t2 = thread::spawn(move || {

16 let mut r: u32 = 0;

17 for i in (max / 2)..max {

18 r += arc_t2.lock().unwrap()[i];

19 }

20 res_arc_t2.fetch_add(r, Ordering::Relaxed);

21 });

22 t1.join().unwrap();

23 t2.join().unwrap();

24 println!("{}", res_arc.load(Ordering::Relaxed));
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