1 Definitions
Artificial Intelligence: computers to mimic

human behavior and intelligence.
Machine Learning: subset of Al, using sta-

tistical methods to improve with experience.
Deep Learning: subset of ML, using multi-

layered neural networks to model complex

gatterng in data. .
upervised Learning: learn a function that

maps inputs to output labels based on exam-
%le input—qutgut pairs. .
nsupervised Learning: learn patterns in
input data without labeled outputs (cluster-
ing, dimensionality reduction). .
Reinforcement Léarning: learn a policy to
maximize cumulative reward through trial
and error in an environment.
Classification: predict a discrete label from
a fixed set of classes (e.g. spam detection).
* Regression: predict a continuous value.
e Lazy Learner: stores data & make preds
based on similarity to training set (e.g. k-NN).
Eager Learner: build model from data
make preds using model (e.g. decision trees).
Non Parametric Model: complexity grows
with data (e.g. k-NN),
Parametric Model: fixed number of params.
Linear Model: data hnearlﬁ separable.
Non Linear Model: to make /inear, perform
feature space transformation (Kernel trick in
SVMs & non-linear activation funcs in NNs).
Underfitting: model too simple to cap-
ture underlying patterns: HIGH BIAS, LOW
VARIANCE.
Overfitting: model too complex & captures
noise: HIGH VARIANCE, LOW BIAS.
Instance Based Learner: lazy learner where
model stores training set, making preds
based on similarity. Model only built when
pred required.

.

Dataset X is split into frain and fest sets.

Each feature x}(l) is standardised as )E;:) =

XMk
ok

mensionality: data too sparse, overfitting

occurs.

2 K-NNs

A K-NN classifier assigns label based on

the most popular label amongst K near-

est neighbours. K is odd. Increasing K:

. Too many features + curse of di-

* Smoother decision boundary (higher bias)
* Less sensitive to training data (lower variance)

We also need a distance metric:

* Manhattan(()): d(x;,xg) = LY
¢ Euclidian(¢(;): d(xj,xq) = \JL

i=1(xij = xqj
¢ Chebyshev({y,): d(xj,xq) = max}q:1 |xij —xqj|

A distance weighted K-NN weights its
neighbours by their dist. To find weights:
1
d(xi,xq)'
* Gaussian: w; =

* Inverse: w; = o 2
{ Xj.Xgq
Vor exp(-——>"—).

Now incr K has less effect on classifica-
tion (good). When K = N, this is a global
method. Otherwise, its a local method.
DKNNs are more robust to noisy data,
but suffer from curse of dim. K-NNs
will also not filter out irrelevant features.
KNN does regression by computing nean
across K NNs.

3 Decision Trees

An eager learner algorithm that:

1. Search for an optimal splitting rule.

2. Split the dataset according to the rule.

3. Repeat on each new subset.

Entropy: measure of uncertainty of a RV,
the expected amount of information re-
quired to fully define a random state. Low
entropy variables are predictable, high en-
tropy vars are not. Information I(x) =
log,(K) when x takes K states, K = ﬁ
So, I(x) = —log,(P(x)). The avg info is:

K
H(x) == ) P(xi)logy(P(xy))

k
() = | f01oga7 )
X

For each rule, the information gain is

IG(D,S) = H(D)~Y yes {5 H(s) where D is

the dataset, S is the subset & |[D| =} ¢cs |s|-

Split ordered vals by threshold and cate-

gorical vals by symbol. To stop overfitting:

e Stop Early: set max depth for decision tree.

e Prune: Loop through connected to leaf
nodes, turn into a leaf with majority class la-
bel. Eval pruned tree on validation set, prune
if accuracy higher than unpruned. Repeat
until all nodes tested.

Many decision trees make a random for-

est. Regression done by leaf nodes predict-

ing real number.

4 Evaluation

Data split into shuffled (unordered) train-

ing/test. To tune hyperparams, also split

a validation set to eval hyperparams. Af-

ter hyperparameter tuning, retrain model

on combined train/valid sets to get best
model. Then evaluate on test set.

4.1 Cross Validation

When data is limited, 3 sets is wasteful.

Instead divide into k folds with k—1 folds

for train/valid and 1 for test. Repeat k

times with different test folds. Final per-

formance averaged across k runs.
Global Error Estimate = % Z;(:l e

Where e; is the error on fold i. For hyper-

parameter tuning, we can either:

* 1 test fold, 1 valid fold, k-2 train folds. Finds
optimal hyperparameters per fold.

¢ 1 test fold, k—1 cross valid folds. Expensive &
each fold has its own hyperparameters.

4.2 Evaluation Metrics

Conf Mat | Pred Pos | Pred Neg

TP FN
True Pos P FN = |rp ™
True Neg FP N

¢ Accuracy= % (proportion correct).

¢ Classification Error=1- Accuracy.

¢ Precision= % (proportion pos correct).

¢ Recall= TPT+PFN (prop actual pos correct).

¢ Macro Avg precision/recall calc per class,
then average them; treating classes equally.

.

Micro Avg precision/recall sum TP, FP, FN

across all classes, then calc; treating all exam-

ples equally.

F Score combines precision and recall: Fg =

a +IS2) precisionxrecall
B2xprecision+recall

Mean Sq Err= % Zg\il (vi —y‘i)z.

* RMSE= VMSE same units as target var.

.

where g > 0.

.

If data distribution imbalanced, we should nor-
malise confusion matrix rows; or upsample/-
downsample data to balance classes.

4.3 Statistical Significance

A model true error is the prob
it misclassifies a random sample,
errp(h) = P(f(x) # h(x)). The sam-
ple error is based on data sample S:
errg(h) = %ers o(f(x),h(x)) where
5(a,b) = {(1] Ziz Given a sample S with

N > 30, we can estimate errp(h) with an
a% confidence interval:
errg(h)(1—errg(h))
errg(h) £za | ——g—>—+
s(hxzg N
Statistical tests say if means of two sets
are significantly different:

Randomisation: Randomly switch preds be-
tween two models, calc diff in acc. Repeat to
get distr of diffs.

Two Sample T: Estimate likelihood that two
metrics from diff populations are diff.

.

.

Paired T: Estimate significance over many
matched results.

P-hacking is the misuse of data to find
patterns that appear significant.

5 Linear Regressions

dataset
consist-

Linear regression: a
(@, D), (2N, (D)
ing of inputs x() and outputs pi) is
used to learn a f : X — Y such that
Vi € {l,---,N}.f(x(i)) = y(i). Assuming
that f is linear, train by minimising loss
func between pred outputs and true
outputs. Sum of squares loss func:
Z(ﬁ(l),y(l))Z where 9() = f(x(1))
i=1

1

E=

Nf—=

Good loss funcs are easily differentiable. To
minimise, use gradient descent. To do
this, update params with their partial
derivatives:

JE

N N
% - %% Z(};(l) _y(l))z _ Z(ﬁ(l) _y(l))x(l).
i=1 i=1

5.1 Gradient Descent (LR)

Gradient descent updates params by tak-
ing small steps in the neg dir of the partial
derivatives:

for epoch in range(num_epochs):

y_pred = a * X + b

a=a - 1r + sum((y_pred - Y) x X)

b =0b - 1Ir * sum(y_pred - Y)

rmse = sqrt(mean(square(y_pred - Y)))

print(f"{epoch+1}: {a}, {b},

{rmse}")

Gradient of f : R” — R is the gradient of its par-

T
tial derivs: Vg f(0) = [ d{)f(g?) {i{(gf:)] .

6 Neural Networks

A neuron has inputs x1,---,x,, & weights
61,---,0;, & bias b, producing output p.
It also has an activation func g that intro-

duces non-linearity: 9 = g(Z;’Ll Oix; + b).
In notation, omit bias by adding extra in-
put xg = 1 with weight 8y = b. We can
rewrite this with vector notation using
W e R"™! and x e R"™1: p = g(WTx).
Neurons are connected in parallel, so each
neuron detects something different. By
connecting them serially we learn higher
order feats.

By connecting x — /1 — /i, — 7, we have:

'hlzmq(W£X+bm)
. h2:gh2(WhT2hl+bh2)
* 9 =gy(Why +by)
6.1 Perceptron

Perceptrons dont use grad desc. They use

a threshold func as the activation func:
z>0

¢(z) = !
870 z<0”

0; + a(y —h(x))x;. Then:

The learning rule: 0; «

* If desired output y matches the pred h(x), no
update is made.

e If y =1 & h(x) = 0, weights increased to make
h(x) more likely to be 1.

e If y =0 & h(x) = 1, weights decreased to make
h(x) more likely to be 0.

With this, we learn any linearly separa-
ble func. The activation func is sharp
and non-differentiable, so cannot be used
with gradient descent.

6.2 Activation Functions

 Linear g(z) = z for linearly seperable data. Re-
duces multi-layer net to single, not desirable.
g'(2)=11

Sigmoid g(z) = —= maps z  (0,1), good

1+e™%
for binary classification. g’(z) = g(z)(1 — g(z))
e Tanh g(z) = % maps z — (-1,1), good for

binary classification. g’(z) = 1 - g(z)?
RelU g(z) = max(0,z) maps z — [0,00). Effi-
cient & mitigates gradient vanishing. g’(z) =

1 z>0
0 z<0
Softmax g(z;) = e

81z Y Zj

j¢
probability distribution. % = 1\%(;&—}')

scales values into a

6.3 Loss Functions

E, Optimised in grad desc: 0; « 0;—« ,;)T;E
IMSE _ 2 (s I
aps,- =N Wi-i)

Cross entropy loss is l_[;.\i1 p(vi | xi;0). Its

log likelihood for binary data is:

L=-g L, [pilog(yi) + (1 - 9i)log(1 - 91)]
For categorical, where C is set of possible
categories: L = 7§ Z‘i\il ZS:] Viclog(Dic).
6.4 Backpropagation
Backpropogation optmises grad desc for
multi-layer nets, avoiding recalcing the
partial derivatives of each layer. A for-
ward pass computes the outputs of each
layer, and a backward pass computes the
gradients of each layer using the chain

rule. For example:
1. Receive the gradient from the next layer:
JE Nxk
57 €RTTT,
where Z = XW + b is the matrix of pre-
activation values. N = batch size, k = num-
ber of neurons.

2. To update parameters, compute gradients
w.r.t. W and b. Because Z = XW + b, the
derivative of Z w.r.t. W is X, so

JE _ yT JE
ow =X 9z
Each bias affects all samples equally, so
JE _ N JE
b ~ Z'i:l dz;

3. To pass gradients to the previous layer, com-

pute

JE _ JE T

ox =z
since changes in X affect Z through multi-
plication by W.

4. For the activation function A = g(Z), apply

the chain rule:
E E
% =358
where o denotes elementwise multiplica-
tion.

5. The quantity % is the gradient received
from the next layer, because A is that layer’s
input. For example, if the next layer is linear
with Znext = AWnext + bnext, then

9E _ _9E T
OA = TZnext ' mext:

6.5 Gradient Descent (NN)
Gradient descent iteratively trains a

model. With learning rate @, update

weights W’ « W—ag—fv.

dient descent:

In batched gra-

1. Initialise weights W randomly.
2. Until convergence, loop over ‘batches, com-

pute grad of batch only, update weights.

Loss surfaces are complex and we want to
avoid local minima. LR too low — wont
converge, too high — overshoot minima:

* Adaptive LR has diff LR per parame-
ter, taking bigger steps if the gradient

is small, and vice versa.
* LR decay takes smaller steps the closer

to the minimum: a’ < ad, d € (0,1).



6.6 Weight Initialisation
¢ Zero: all neurons learn same featurgs.

* Normal: draw weights from N (0,0°).
: 6
. - L6
¢ Xavier Gorot: W U(_ nin+"aut)
where n is the num of inputs & out-
puts, keeps the variance of activations

and backpropagated gradients roughly
the same across layers.

6.7 Data Normalisation
Helps with convergence, as weight updates
oc input data. Methods include:

(x—min(x))(b—a)

max(x)—-min(x) scales

e Minmax: x’ =a+
data to [a,b]. —

¢ Standardisation: x’ Tﬂ where y, o
are the mean, variance of input data.
Gives data with mean 0 and var 1.

Scaling values must only be calculated
on the training set.

6.8 Gradient Checking

Verifies backprop is correctly computing:
¢ Weight difference: w; = wy_1 — 95

¢ Perturb weight and check loss dlffer—

. JE _ E(w+e)-E(w—e)
ence: 5= = lime 0 —=——5%——"-

Both methods should give very similar
values of %= 9 1'

6.9 Overhtting

To prevent overfitting, (1) decrease ca-
pacity, (2) use more training data, (3)
stop early by using validation set to
monitor perf improvement over epochs,
(4) dropout by randomly disabling neu-
rons during training preventing coadap-
tation, (5) regularisation, add info or
constrants to prevent overfitting:

* L2 add square weights to loss func, encour-
aging sharing between features: J(6) = E(y,9) +

JE
AY pw? Sowe—w-a —w+2/\w .

L1 add absolute weights to loss func, encour-
aging sparsity: J(0) = E(y,9) + A X, [wl|. So,
JE .

w%w—a(%ﬁ—/\agn(w) .

7 Clustering

Cluster: set of instances similar to each
other but dissimilar to instances in other
clusters.  Clustering is grouping in-
stances in some feature space into clus-
ters. K-means clustering:

1. Randomly select K initial cluster centroids.
Randomly select pg,- -, piy.

2. Assign each data point to nearest centroid.
Viell,..., n. [C( i) .= argmin; Hx — Wi II?

3. Recalculate centroids as mean of its points.

- qeli) Zjyx(d)

k}. Hj= 7):17’} { (”]Iv

Yo Het=j)

if condition is true

otherwise

Vjief{l...,

le{(])

where

4. If not converged, restart from (2).

To pick K, use cross validation or elbow
method:

1. Run K-means multiple times with diff K.
2. Keep track of cost L(©) for each K.
3. Plot L(©) against K & look for elbow point

where the decrease in cost starts slows
down. This point is a good choice for K.

K-means is simple & efficient, but K is pre-
specified, finds a local optimum, needs dist
func, sensitive to outliers and does not
handle hyper-ellipsoidal clusters.

8 Probability Density Estimation

Can be non-parametric (low bias, high
var) or parametric (high bias, low var) (as-
suming data distribution).

8.1 Histograms

1. Divide data range into k equal-width bins.

2. Count the number of data points in each bin.
3. Estimate PDF as normalized counts per bin.
4. Choice of bin width affects estimate: too

wide loses detail, too narrow adds noise.

8.2 Kernel Density Estimation
Computes p(x) by looking at training ex-
amples in a kernel function H:

1 x—x(?)
w5)

Where N is num of training examples, h
is bandwidth (window size) & D is num
of dimensions. A simple kernel function
is the uniform kernel:

1 ifVjell,
H =
() {O otherwise

p)=F TN

. 1
D}.|u]| < 2

Another common kernel is Gaussian:
H(u) = o5 exp (-3 llul)

)2
(x) = NZ 2nh2 zexp( IIxZ);l Il )

Increasing h smooths estimate, decreasing h
adds noise sensitivity.

8.3 Parametrics Methods

Assume data has uniform Gaussian dist:

B (xz:r}?z )

2y _ 1
)= V2mo? exp(
Then p(x) found by fitting , ¢

N(x|po

=
62 = LY, (- p)?
px) = N(x| ,6%)

The Multivariate Gaussian dist general-
izes univariate case to many dimensions:

exp (-5 (x—p) T2 (x-p)
2m)Pz|

N(Xlﬂ,Z):

Then p(x) found by fitting p, o

= T
L= R I - - pt
plx x|A%)
A Mixture Model improves bias-var

tradeoff, combining many distributions:
%) = Ly mepk (x| Ok)
where0§nk51/\ZkK=1nk:1
A Gaussian Mixture Model (GMM):
plx10) = Ly meN (x| jues )

8.4 Likelihood
Quantifies how well model fits data as the
probability of observing x from a dataset:

p(X10) =TT, p(x 1 0)
where O are model params. Negative
log-likelihood makes this a minimisation
problem:
L=-logp(X|0)=

-Y N logp(x) | 6)

When Gaussian fitting, we are actually minimis-
ing log likelihood! This can be proven by setting

[)L =0and [M =0 to find the minima.

9 GMM- EM Algorithm

GMMs model complex dists, but have

lots of params to optimise: 6 =

(T mie, Xk | k = 1,...,K}. GMM-EM fits

a GMM to data using the Expectation-

Maximization (EM) algorithm:

1. Choose K for the number of compo-
nents, randomly initialise params 000,

2. Expectation: Compute respon51b111—
ties per data x() and component k:

7Ik/\/ |I4k i)

Z i i Xj)
3. Maximlzatlon Per component. up-
date the means i, covariances 3, and
mixture proportions fy:

Tik =

Ak = N%( N rigex®)
L= NL,( EN rineeD = ) (D) = i) T

Ty = % where Ny = Zf\il Tik

4. If not converged, repeat from (2).

Like K-means, GMM-EM converges to lo-
cal optima. To find K we minimise the
Bayesian Information Criterion (BIC),
which takes into account the negative
log-likelihood and model complexity (Oc-
cam’s razor): BICg = L(K) + % log N
where Px = 6K — 1 is the number of pa-
rameters for 2D gaussians. Or, we could
use cross validation:
Spllt into tra1n1n§ and validation sets.

2 raining set for different K.
3. Evaluate log-likelihood on validation set.

9.1 VS K-Means
In both cases:

1. We specify K clusters/components.

2. Convergence happens when assignments/-
params stabilise.

3. Sensitive to initialisation.

Often K-means is run first to initialise GMM-EM.

GMM-EM does soft clustering, encoding to

what degree each data point belongs to each

cluster, while K-means does hard clustering -

assigns each data point to exactly one cluster.

GMM-EM can also generate clusters with different

probabilities and non-spherical clusters.

10 Evolutionary Algorithms

An optimisation algorithm for black box

funcs (unknown grad), a reinforcement

learning problem. The concept is:

1. Maintain population (different genotypes).
2. Eval fitness on black box func (phenotype).
3. Fittest individuals will reproduce.

There are three main operators:

 Selection: who reproduces?
* Crossover: Mixes parent genotypes.
* Mutation: Type and frequency varia-

tion applied to genotypes.

Easy to parallelize but slower than grad desc

when gradient known and problem simple.

10.1 Genetic Algorithms

* Fitness func is the problem to solve. Muax-
imising should lead to optimal solution.

¢ Genotype & Phenotype represent potential
solutions. Fed into FF (e.g. a binary string).

» Stopping Critereon usually specific fitness
val, generation limit, or convergence.

In Biased Roulette Wheel Selection, p; =
f1
Z] lfj
For random r € [0,1], the individual where the
cum prob exceeds r: q; = Z}:l pj 2 r. In tour-

where f; is the fitness of individual i.

nament selection:

1. Randomly draw 2 individs from population.
2. Select the one with higher fitness as a parent
3. Repeat until enough parents are selected.

This method is less susceptible to premature con-
vergence, and easier to parallelise.

Elitism ensures best individs selected
without alteration, preventing losing best
solutions to random chance. Usually ~
10% of the population.

10.2 Evolutionary Strategies

Here, the genotype is a list of reals, par-
ent selection uniform & mutation gener-
ated from a gaussian. In y+ A ES:

1. Randomly generate y+ A individuals.

2. Evaluate population.

3. Select p best individuals as parents.

4. Generate A offsprings y where y; = x; +
N(0,0) & x; is a randomly selected parent.

5. The new population is ut iz1 Xi) (U?:lyi).

6. Repeat from (2).

Usually % ~ 5. We must choose o st:

e Large o converges quickly, hard to refine.

¢ Small o refines well, but longer convergence
& can get stuck in local optima.

¢ We could update o over time by adding o to
the genotype:

x]f = {xj, 0/}
=oj exp(to N(0,1))
Vi :Xj+0'1' N(O,l)

Where 7 is the learning rate. Heuristically,
TQ o< \Q where d = dim(x).

10.3 Novelty Search

Uses archive to store prev seen be-

haviours.  Novelty is avg dist to k

nearest neighbours in archive Nov(x) =

N zN d(x,x;). For the dist metric, de-

fine a space of behavioral descriptors,

which capture important aspects of the

phenotype. Instead of optimising solu-

tion quality, NS optimises novelty (uses as

fitness score).

10 4 Quality-Diversity Optimisation

. Take stochasitic selection of solutions. Can

be biased towards quality/novelty.

2. Offspring generated via mutation/crossover.

3. Each offspring is evaluated for quality (fit-
ness) & behavioral descriptor.

4. Offspring is added to collection if more novel
or higher quality.

Multidimensional Archive of Pheno-
typic Elites (MAP-Elites) is a QD algo-
rithm to discretise the behavioral desc
space in a grid, then try to fill it with the
best solutions. Each new solution fills a
cell corresponding to the behavioral desc.
If cell already occupied, replace existing
solution if we have higher fitness. Grid
size is hyperparam. Easy to impl, but den-
sity not uniform.

10.5 Quantifying QD Performance
Can use diversity (archive size), perfor-
mance (max/mean fitness val) & conver-
gence speed of both metrics. Summa-
rized as QD-Score: sum of fitness of all so-
lutions in archive.



