
1 Definitions
• Artificial Intelligence: computers to mimic

human behavior and intelligence.
• Machine Learning: subset of AI, using sta-

tistical methods to improve with experience.
• Deep Learning: subset of ML, using multi-

layered neural networks to model complex
patterns in data.

• Supervised Learning: learn a function that
maps inputs to output labels based on exam-
ple input-output pairs.

• Unsupervised Learning: learn patterns in
input data without labeled outputs (cluster-
ing, dimensionality reduction).

• Reinforcement Learning: learn a policy to
maximize cumulative reward through trial
and error in an environment.

• Classification: predict a discrete label from
a fixed set of classes (e.g. spam detection).

• Regression: predict a continuous value.
• Lazy Learner: stores data & make preds

based on similarity to training set (e.g. k-NN).
• Eager Learner: build model from data &

make preds using model (e.g. decision trees).
• Non Parametric Model: complexity grows

with data (e.g. k-NN).
• Parametric Model: fixed number of params.
• Linear Model: data linearly separable.
• Non Linear Model: to make linear, perform

feature space transformation (Kernel trick in
SVMs & non-linear activation funcs in NNs).

• Underfitting: model too simple to cap-
ture underlying patterns: HIGH BIAS, LOW
VARIANCE.

• Overfitting: model too complex & captures
noise: HIGH VARIANCE, LOW BIAS.

• Instance Based Learner: lazy learner where
model stores training set, making preds
based on similarity. Model only built when
pred required.

Dataset X is split into train and test sets.

Each feature x(i)k is standardised as x̃
(i)
k =

xik−µk
σk

. Too many features 7→ curse of di-
mensionality: data too sparse, overfitting
occurs.
2 K-NNs
A K-NN classifier assigns label based on
the most popular label amongst K near-
est neighbours. K is odd. Increasing K :
• Smoother decision boundary (higher bias)
• Less sensitive to training data (lower variance)

We also need a distance metric:

• Manhattan(ℓ1): d(xi ,xq ) =
∑n
j=1

∣∣∣xij − xqj ∣∣∣
• Euclidian(ℓ2): d(xi ,xq ) =

√∑n
j=1(xij − xqj )
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• Chebyshev(ℓ∞): d(xi ,xq ) = maxnj=1
∣∣∣xij − xqj ∣∣∣

A distance weighted K-NN weights its
neighbours by their dist. To find weights:

• Inverse: wi =
1

d(xi ,xq )
.

• Gaussian: wi =
1√
2π

exp(−
d(xi ,xq )
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2 ).

Now incr K has less effect on classifica-
tion (good). When K = N , this is a global
method. Otherwise, its a local method.
DKNNs are more robust to noisy data,
but suffer from curse of dim. K-NNs
will also not filter out irrelevant features.
KNN does regression by computing mean
across K NNs.

3 Decision Trees
An eager learner algorithm that:
1. Search for an optimal splitting rule.
2. Split the dataset according to the rule.
3. Repeat on each new subset.

Entropy: measure of uncertainty of a RV,
the expected amount of information re-
quired to fully define a random state. Low
entropy variables are predictable, high en-
tropy vars are not. Information I(x) =
log2(K) when x takes K states, K = 1

P(x) .

So, I(x) = − log2(P(x)). The avg info is:

H(x) =−
K∑
k

P(xk ) log2(P(xk ))

H(x) =−
∫
x
f (x) log2(f (x))

For each rule, the information gain is

IG(D,S) =H(D)−
∑

s∈S
|s|
|D|H(s) whereD is

the dataset, S is the subset & |D| =
∑

s∈S |s|.
Split ordered vals by threshold and cate-
gorical vals by symbol. To stop overfitting:
• Stop Early: set max depth for decision tree.
• Prune: Loop through connected to leaf

nodes, turn into a leaf with majority class la-
bel. Eval pruned tree on validation set, prune
if accuracy higher than unpruned. Repeat
until all nodes tested.

Many decision trees make a random for-
est. Regression done by leaf nodes predict-
ing real number.
4 Evaluation
Data split into shuffled (unordered) train-
ing/test. To tune hyperparams, also split
a validation set to eval hyperparams. Af-
ter hyperparameter tuning, retrain model
on combined train/valid sets to get best
model. Then evaluate on test set.
4.1 Cross Validation
When data is limited, 3 sets is wasteful.
Instead divide into k foldswith k−1 folds
for train/valid and 1 for test. Repeat k
times with different test folds. Final per-
formance averaged across k runs.

Global Error Estimate = 1
k
∑k

i=1 ei
Where ei is the error on fold i. For hyper-
parameter tuning, we can either:
• 1 test fold, 1 valid fold, k−2 train folds. Finds

optimal hyperparameters per fold.
• 1 test fold, k−1 cross valid folds. Expensive &

each fold has its own hyperparameters.
4.2 Evaluation Metrics
Conf Mat Pred Pos Pred Neg
True Pos TP FN

True Neg FP TN

=⇒
(
TP FN

FP TN

)

• Accuracy= TP+TN
TP+TN+FP+FN (proportion correct).

• Classification Error= 1−Accuracy.
• Precision= TP

TP+FP (proportion pos correct).
• Recall= TP

TP+FN (prop actual pos correct).
• Macro Avg precision/recall calc per class,

then average them; treating classes equally.

• Micro Avg precision/recall sum TP, FP, FN
across all classes, then calc; treating all exam-
ples equally.

• F Score combines precision and recall: Fβ =

(1+ β2) precision×recall
β2×precision+recall

where β > 0.

• Mean Sq Err= 1
N

∑N
i=1(yi − ŷi )

2.

• RMSE=
√
MSE same units as target var.

If data distribution imbalanced, we should nor-
malise confusion matrix rows; or upsample/-
downsample data to balance classes.

4.3 Statistical Significance
A model true error is the prob
it misclassifies a random sample,
errD (h) = P(f (x) , h(x)). The sam-
ple error is based on data sample S :
errS (h) = 1

N
∑

x∈S δ(f (x),h(x)) where

δ(a,b) =
{
1 a , b
0 a = b

. Given a sample S with

N ≥ 30, we can estimate errD (h) with an
α% confidence interval:

errS (h)± z α
2

√
errS (h)(1−errS (h))

N

Statistical tests say if means of two sets
are significantly different:

• Randomisation: Randomly switch preds be-
tween two models, calc diff in acc. Repeat to
get distr of diffs.

• Two Sample T: Estimate likelihood that two
metrics from diff populations are diff.

• Paired T: Estimate significance over many
matched results.

P-hacking is the misuse of data to find
patterns that appear significant.

5 Linear Regressions
Linear regression: a dataset
{〈x(1), y(1)〉, · · · ,〈x(N ), y(N )〉} consist-
ing of inputs x(i) and outputs y(i) is
used to learn a f : X → Y such that
∀i ∈ {1, · · · ,N }.f (x(i)) = y(i). Assuming
that f is linear, train by minimising loss
func between pred outputs and true
outputs. Sum of squares loss func:

E = 1
2

N∑
i=1

(ŷ(i)−y(i))2 where ŷ(i) = f (x(i))

Good loss funcs are easily differentiable. To
minimise, use gradient descent. To do
this, update params with their partial
derivatives:

∂E
∂a

= ∂
∂a

1
2

N∑
i=1

(ŷ(i) − y(i))2 =
N∑
i=1

(ŷ(i) − y(i))x(i)

∂E
∂b

= ∂
∂b

1
2

N∑
i=1

(ŷ(i) − y(i))2 =
N∑
i=1

(ŷ(i) − y(i))

5.1 Gradient Descent (LR)
Gradient descent updates params by tak-
ing small steps in the neg dir of the partial
derivatives:

1 for epoch in range(num_epochs):

2 y_pred = a * X + b

3 a = a - lr * sum((y_pred - Y) * X)

4 b = b - lr * sum(y_pred - Y)

5 rmse = sqrt(mean(square(y_pred - Y)))

6 print(f"{epoch+1}: {a}, {b}, {rmse}")

Gradient of f : Rn → R is the gradient of its par-

tial derivs: ∇θ f (θ) =
[
∂f (θ)
∂θ1

· · · ∂f (θ)
∂θn

]T
.

6 Neural Networks
A neuron has inputs x1, · · · ,xm & weights
θ1, · · · ,θm & bias b, producing output ŷ.
It also has an activation func g that intro-
duces non-linearity: ŷ = g

(∑m
i=1θixi + b

)
.

In notation, omit bias by adding extra in-
put x0 = 1 with weight θ0 = b. We can
rewrite this with vector notation using
W ∈ Rm×1 and x ∈ Rm×1: ŷ = g(WT x).
Neurons are connected in parallel, so each
neuron detects something different. By
connecting them serially we learn higher
order feats.
By connecting x→ h1→ h2→ ŷ, we have:

• h1 = gh1 (W
T
h1

x + bh1 )

• h2 = gh2 (W
T
h2

h1 + bh2 )

• ŷ = gŷ (W
T
ŷ h2 + bŷ )

6.1 Perceptron
Perceptrons dont use grad desc. They use
a threshold func as the activation func:
g(z) =

{
1 z ≥ 0
0 z < 0

. The learning rule: θi ←

θi +α(y − h(x))xi . Then:

• If desired output y matches the pred h(x), no
update is made.

• If y = 1 & h(x) = 0, weights increased to make
h(x) more likely to be 1.

• If y = 0 & h(x) = 1, weights decreased to make
h(x) more likely to be 0.

With this, we learn any linearly separa-
ble func. The activation func is sharp
and non-differentiable, so cannot be used
with gradient descent.
6.2 Activation Functions
• Linear g(z) = z for linearly seperable data. Re-

duces multi-layer net to single, not desirable.
g ′ (z) = 11

• Sigmoid g(z) = 1
1+e−z maps z 7→ (0,1), good

for binary classification. g ′ (z) = g(z)(1− g(z))
• Tanh g(z) = ez−e−z

ez+e−z maps z 7→ (−1,1), good for

binary classification. g ′ (z) = 1− g(z)2
• ReLU g(z) = max(0, z) maps z 7→ [0,∞). Effi-

cient & mitigates gradient vanishing. g ′ (z) ={
1 z > 0
0 z ≤ 0

• Softmax g(zi ) =
ezi∑
j e

zj
scales values into a

probability distribution. ∂L
∂z

= 1
N (ŷ − y)

6.3 Loss Functions
E, Optimised in grad desc: θi ← θi−α ∂E

∂θi
∂MSE
∂ŷi

= 2
N (ŷi − yi )

Cross entropy loss is
∏N

i=1 p(yi | xi ;θ). Its
log likelihood for binary data is:

L = − 1
N

∑N
i=1 [yi log(ŷi ) + (1− ŷi ) log(1− ŷi )]

For categorical, where C is set of possible
categories: L = − 1

N
∑N

i=1
∑C

c=1 yic log(ŷic).
6.4 Backpropagation
Backpropogation optmises grad desc for
multi-layer nets, avoiding recalcing the
partial derivatives of each layer. A for-
ward pass computes the outputs of each
layer, and a backward pass computes the
gradients of each layer using the chain
rule. For example:
1. Receive the gradient from the next layer:

∂E
∂Z
∈ RN×k ,

where Z = XW + b is the matrix of pre-
activation values. N = batch size, k = num-
ber of neurons.

2. To update parameters, compute gradients
w.r.t. W and b. Because Z = XW + b, the
derivative of Z w.r.t. W is X, so

∂E
∂W

= XT ∂E
∂Z

.

Each bias affects all samples equally, so

∂E
∂b

=
∑N
i=1

∂E
∂zi

.

3. To pass gradients to the previous layer, com-
pute

∂E
∂X

= ∂E
∂Z

WT ,

since changes in X affect Z through multi-
plication by W .

4. For the activation function A = g(Z), apply
the chain rule:

∂E
∂Z

= ∂E
∂A
◦ g ′ (Z),

where ◦ denotes elementwise multiplica-
tion.

5. The quantity ∂E
∂A

is the gradient received
from the next layer, because A is that layer’s
input. For example, if the next layer is linear
with Znext = AWnext + bnext, then

∂E
∂A

= ∂E
∂Znext

WT
next .

6.5 Gradient Descent (NN)
Gradient descent iteratively trains a
model. With learning rate α, update
weightsW ′ ←W −α ∂E

∂W
. In batched gra-

dient descent:
1. Initialise weights W randomly.
2. Until convergence, loop over batches, com-

pute grad of batch only, update weights.

Loss surfaces are complex and we want to
avoid local minima. LR too low → wont
converge, too high→ overshoot minima:

• Adaptive LR has diff LR per parame-
ter, taking bigger steps if the gradient
is small, and vice versa.

• LR decay takes smaller steps the closer
to the minimum: a′ ← ad , d ∈ (0,1).
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6.6 Weight Initialisation
• Zero: all neurons learn same features.
• Normal: draw weights fromN (0,σ2).
• Xavier Gorot: W ∼ U

(
±
√

6
nin+nout

)
where n is the num of inputs & out-
puts, keeps the variance of activations
and backpropagated gradients roughly
the same across layers.

6.7 Data Normalisation
Helps with convergence, as weight updates
∝ input data. Methods include:

• Minmax: x′ = a + (x−min(x))(b−a)
max(x)−min(x) scales

data to [a,b].
• Standardisation: x′ = x−µ

σ where µ, σ
are the mean, variance of input data.
Gives data with mean 0 and var 1.

Scaling values must only be calculated
on the training set.
6.8 Gradient Checking
Verifies backprop is correctly computing:

• Weight difference: wt = wt−1−α ∂E
∂wt−1

.
• Perturb weight and check loss differ-

ence: ∂E
∂w

= limϵ→0
E(w+ϵ)−E(w−ϵ)

2ϵ .

Both methods should give very similar
values of ∂E

∂w
.

6.9 Overfitting
To prevent overfitting, (1) decrease ca-
pacity, (2) use more training data, (3)
stop early by using validation set to
monitor perf improvement over epochs,
(4) dropout by randomly disabling neu-
rons during training preventing coadap-
tation, (5) regularisation, add info or
constrants to prevent overfitting:

• L2 add square weights to loss func, encour-
aging sharing between features: J(θ) = E(y, ŷ) +

λ
∑
ww2. So w← w−α

(
∂E
∂w

+2λw
)
.

• L1 add absolute weights to loss func, encour-
aging sparsity: J(θ) = E(y, ŷ) + λ

∑
w |w|. So,

w← w−α
(
∂E
∂w

+λsign(w)
)
.

7 Clustering
Cluster: set of instances similar to each
other but dissimilar to instances in other
clusters. Clustering is grouping in-
stances in some feature space into clus-
ters. K-means clustering:

1. Randomly select K initial cluster centroids.
Randomly select µ0 , · · · ,µk .

2. Assign each data point to nearest centroid.
∀i ∈ {1, . . . ,n}.

[
c(i) := argminj ||x(i) −µj ||2

]
3. Recalculate centroids as mean of its points.

∀j ∈ {1, . . . , k}.
µj := ∑n

i=1 1{c
(i)=j}x(i)∑n

i=1 1{c
(i)=j}

 where

1{·} =
{
1 if condition is true
0 otherwise

4. If not converged, restart from (2).

To pick K , use cross validation or elbow
method:

1. Run K-means multiple times with diff K .
2. Keep track of cost L(Θ) for each K .
3. Plot L(Θ) against K & look for elbow point

where the decrease in cost starts slows
down. This point is a good choice for K .

K-means is simple & efficient, but K is pre-
specified, finds a local optimum, needs dist
func, sensitive to outliers and does not
handle hyper-ellipsoidal clusters.
8 Probability Density Estimation
Can be non-parametric (low bias, high
var) or parametric (high bias, low var) (as-
suming data distribution).
8.1 Histograms
1. Divide data range into k equal-width bins.
2. Count the number of data points in each bin.
3. Estimate PDF as normalized counts per bin.
4. Choice of bin width affects estimate: too

wide loses detail, too narrow adds noise.

8.2 Kernel Density Estimation
Computes p̂(x) by looking at training ex-
amples in a kernel function H :

p̂(x) = 1
N

∑n
i=1N

1
hD

H
(
x−x(i)

h

)
Where N is num of training examples, h
is bandwidth (window size) & D is num
of dimensions. A simple kernel function
is the uniform kernel:

H(u) =

1 if ∀j ∈ {1, · · · ,D}.|uj | ≤ 1
2

0 otherwise

Another common kernel is Gaussian:

H(u) = 1
(2π)D/2 exp

(
− 12 ||u||

2
)

p̂(x) = 1
N

∑N
i=1

1
(2πh2)D/2 exp

(
− ||x−x

(i) ||2
2h2

)
Increasing h smooths estimate, decreasing h
adds noise sensitivity.
8.3 Parametrics Methods
Assume data has uniform Gaussian dist:

N (x | µ,σ2) = 1√
2πσ2

exp
(
− (x−µ)

2

2σ2

)
Then p̂(x) found by fitting µ, σ2:

µ̂ = 1
N

∑N
i=1 x

(i)

σ̂2 = 1
N

∑N
i=1(x

(i) − µ̂)2

p̂(x) =N (x | µ̂, σ̂2)

The Multivariate Gaussian dist general-
izes univariate case to many dimensions:

N (x | µ,Σ) =
exp

(
− 12 (x −µ)

TΣ−1(x −µ)
)√

(2π)D |Σ|

Then p̂(x) found by fitting µ, σ2:

µ̂ = 1
N

∑N
i=1 x

(i)

Σ̂ = 1
N

∑N
i=1(x

(i) − µ̂)(x(i) − µ̂)T

p̂(x) =N (x | µ̂, Σ̂)

A Mixture Model improves bias-var
tradeoff, combining many distributions:

p(x) =
∑K

k=1πkpk (x | θk )

where 0≦ πk ≤ 1∧
∑K

k=1πk = 1

A Gaussian Mixture Model (GMM):
p(x | θ) =

∑K
k=1πkN (x | µk ,Σk )

8.4 Likelihood
Quantifies howwell model fits data as the
probability of observing x from a dataset:

p(X | θ) =
∏N

i=1 p(x
(i) | θ)

where θ are model params. Negative
log-likelihood makes this a minimisation
problem:
L = − logp(X | θ) = −

∑N
i=1 logp(x

(i) | θ)

When Gaussian fitting, we are actually minimis-
ing log likelihood! This can be proven by setting
∂L
∂µ

= 0 and ∂L
∂σ2

= 0 to find the minima.

9 GMM-EM Algorithm
GMMs model complex dists, but have
lots of params to optimise: θ =
{πk ,µk ,Σk | k = 1, . . . ,K}. GMM-EM fits
a GMM to data using the Expectation-
Maximization (EM) algorithm:
1. Choose K for the number of compo-

nents, randomly initialise params θ(0).
2. Expectation: Compute responsibili-

ties per data x(i) and component k:

rik =
πkN (x(i) | µk ,Σk )∑K
j=1πjN (x(i) | µj ,Σj )

3. Maximization: Per component: up-
date the means µ̂k , covariances Σ̂k , and
mixture proportions π̂k :

µ̂k =
1
Nk

∑N
i=1 rikx

(i)

Σk =
1
Nk

∑N
i=1 rik (x

(i) − µ̂k )(x(i) − µ̂k )T

πk =
Nk
N where Nk =

∑N
i=1 rik

4. If not converged, repeat from (2).

Like K-means, GMM-EM converges to lo-
cal optima. To find K we minimise the
Bayesian Information Criterion (BIC),
which takes into account the negative
log-likelihood andmodel complexity (Oc-
cam’s razor): BICK = L(K) + PK

2 logN
where PK = 6K − 1 is the number of pa-
rameters for 2D gaussians. Or, we could
use cross validation:

1. Split into training and validation sets.
2. Fit GMM-EM on training set for different K .
3. Evaluate log-likelihood on validation set.

9.1 VS K-Means
In both cases:

1. We specify K clusters/components.
2. Convergence happens when assignments/-

params stabilise.
3. Sensitive to initialisation.

Often K-means is run first to initialise GMM-EM.
GMM-EM does soft clustering, encoding to
what degree each data point belongs to each
cluster, while K-means does hard clustering -
assigns each data point to exactly one cluster.
GMM-EM can also generate clusters with different
probabilities and non-spherical clusters.
10 Evolutionary Algorithms
An optimisation algorithm for black box
funcs (unknown grad), a reinforcement
learning problem. The concept is:

1. Maintain population (different genotypes).
2. Eval fitness on black box func (phenotype).
3. Fittest individuals will reproduce.

There are three main operators:

• Selection: who reproduces?
• Crossover: Mixes parent genotypes.
• Mutation: Type and frequency varia-
tion applied to genotypes.

Easy to parallelize but slower than grad desc
when gradient known and problem simple.
10.1 Genetic Algorithms
• Fitness func is the problem to solve. Max-

imising should lead to optimal solution.
• Genotype & Phenotype represent potential

solutions. Fed into FF (e.g. a binary string).
• Stopping Critereon usually specific fitness

val, generation limit, or convergence.

In Biased Roulette Wheel Selection, pi =
fi∑N
j=1 fj

where fi is the fitness of individual i.

For random r ∈ [0,1], the individual where the
cum prob exceeds r: qi =

∑i
j=1 pj ≥ r. In tour-

nament selection:

1. Randomly draw 2 individs from population.
2. Select the one with higher fitness as a parent
3. Repeat until enough parents are selected.

This method is less susceptible to premature con-
vergence, and easier to parallelise.
Elitism ensures best individs selected
without alteration, preventing losing best
solutions to random chance. Usually ≈
10% of the population.
10.2 Evolutionary Strategies
Here, the genotype is a list of reals, par-
ent selection uniform & mutation gener-
ated from a gaussian. In µ+λ ES:

1. Randomly generate µ+λ individuals.
2. Evaluate population.
3. Select µ best individuals as parents.
4. Generate λ offsprings y where yi = xj +
N (0,σ) & xj is a randomly selected parent.

5. The new population is (
⋃µ

i=1 xi )∪ (
⋃λ

i=1 yi ).
6. Repeat from (2).

Usually λ
µ ≈ 5. We must choose σ st:

• Large σ converges quickly, hard to refine.
• Small σ refines well, but longer convergence

& can get stuck in local optima.
• We could update σ over time by adding σ to

the genotype:

x′j = {xj ,σj }

σi = σj exp(τ0 N (0,1))

yi = xj +σi N (0,1)

Where τ0 is the learning rate. Heuristically,
τ0 ∝ 1√

d
where d = dim(x).

10.3 Novelty Search
Uses archive to store prev seen be-
haviours. Novelty is avg dist to k
nearest neighbours in archive Nov(x) =
1
N

∑N
i=1 d(x,xi ). For the dist metric, de-

fine a space of behavioral descriptors,
which capture important aspects of the
phenotype. Instead of optimising solu-
tion quality, NS optimises novelty (uses as
fitness score).
10.4 Quality-Diversity Optimisation
1. Take stochasitic selection of solutions. Can

be biased towards quality/novelty.
2. Offspring generated viamutation/crossover.
3. Each offspring is evaluated for quality (fit-

ness) & behavioral descriptor.
4. Offspring is added to collection ifmore novel

or higher quality.

Multidimensional Archive of Pheno-
typic Elites (MAP-Elites) is a QD algo-
rithm to discretise the behavioral desc
space in a grid, then try to fill it with the
best solutions. Each new solution fills a
cell corresponding to the behavioral desc.
If cell already occupied, replace existing
solution if we have higher fitness. Grid
size is hyperparam. Easy to impl, but den-
sity not uniform.
10.5 Quantifying QD Performance
Can use diversity (archive size), perfor-
mance (max/mean fitness val) & conver-
gence speed of both metrics. Summa-
rized as QD-Score: sum of fitness of all so-
lutions in archive.
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